Limits...
Vector competence of the tick Ixodes ricinus for transmission of Bartonella birtlesii.

Reis C, Cote M, Le Rhun D, Lecuelle B, Levin ML, Vayssier-Taussat M, Bonnet SI - PLoS Negl Trop Dis (2011)

Bottom Line: We used a murine model to assess the vector competence of Ixodes ricinus for Bartonella birtlesii.Larval and nymphal I. ricinus were fed on a B. birtlesii-infected mouse.Consequently, bartonelloses should be now included in the differential diagnosis for patients exposed to tick bites.

View Article: PubMed Central - PubMed

Affiliation: Institut National de la Recherche Agronomique, USC INRA Bartonella-Tiques, ANSES, Maisons-Alfort, France.

ABSTRACT
Bartonella spp. are facultative intracellular vector-borne bacteria associated with several emerging diseases in humans and animals all over the world. The potential for involvement of ticks in transmission of Bartonella spp. has been heartily debated for many years. However, most of the data supporting bartonellae transmission by ticks come from molecular and serological epidemiological surveys in humans and animals providing only indirect evidences without a direct proof of tick vector competence for transmission of bartonellae. We used a murine model to assess the vector competence of Ixodes ricinus for Bartonella birtlesii. Larval and nymphal I. ricinus were fed on a B. birtlesii-infected mouse. The nymphs successfully transmitted B. birtlesii to naïve mice as bacteria were recovered from both the mouse blood and liver at seven and 16 days after tick bites. The female adults successfully emitted the bacteria into uninfected blood after three or more days of tick attachment, when fed via membrane feeding system. Histochemical staining showed the presence of bacteria in salivary glands and muscle tissues of partially engorged adult ticks, which had molted from the infected nymphs. These results confirm the vector competence of I. ricinus for B. birtlesii and represent the first in vivo demonstration of a Bartonella sp. transmission by ticks. Consequently, bartonelloses should be now included in the differential diagnosis for patients exposed to tick bites.

Show MeSH

Related in: MedlinePlus

Mouse infection by nymph ticks.Detection of Bartonella in 6-day old liquid medium cultures inoculated with blood of a mouse fed upon by B. birtlesii-infected I. ricinus nymphs by A. semi-nested PCR. Lines D0, D7, and D16 represent blood samples taken on days 0, 7, and 16 after tick placement respectively; T+ – B. birtlesii DNA; M – molecular mass marker. B. immunofluorescence assay. D-0, D-7, and D-16 represent blood samples taken on days 0, 7, and 16 after tick placement respectively.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3104967&req=5

pntd-0001186-g001: Mouse infection by nymph ticks.Detection of Bartonella in 6-day old liquid medium cultures inoculated with blood of a mouse fed upon by B. birtlesii-infected I. ricinus nymphs by A. semi-nested PCR. Lines D0, D7, and D16 represent blood samples taken on days 0, 7, and 16 after tick placement respectively; T+ – B. birtlesii DNA; M – molecular mass marker. B. immunofluorescence assay. D-0, D-7, and D-16 represent blood samples taken on days 0, 7, and 16 after tick placement respectively.

Mentions: PCR detected the presence of Bartonella spp. DNA in Schneider Drosophila medium inoculated with blood samples from each of the three mice on days seven and 16, but not on day zero (Figure 1A). All amplified fragments were 100% identical to the B. birtlesii corresponding fragment of the 16S rRNA gene (accession number AF204274). B. birtlesii was also detected in the same samples by immunofluorescence (Figure 1B). This confirms the presence and viability of B. birtlesii bacteria in the blood of mice fed upon by B. birtlesii-infected ticks.


Vector competence of the tick Ixodes ricinus for transmission of Bartonella birtlesii.

Reis C, Cote M, Le Rhun D, Lecuelle B, Levin ML, Vayssier-Taussat M, Bonnet SI - PLoS Negl Trop Dis (2011)

Mouse infection by nymph ticks.Detection of Bartonella in 6-day old liquid medium cultures inoculated with blood of a mouse fed upon by B. birtlesii-infected I. ricinus nymphs by A. semi-nested PCR. Lines D0, D7, and D16 represent blood samples taken on days 0, 7, and 16 after tick placement respectively; T+ – B. birtlesii DNA; M – molecular mass marker. B. immunofluorescence assay. D-0, D-7, and D-16 represent blood samples taken on days 0, 7, and 16 after tick placement respectively.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3104967&req=5

pntd-0001186-g001: Mouse infection by nymph ticks.Detection of Bartonella in 6-day old liquid medium cultures inoculated with blood of a mouse fed upon by B. birtlesii-infected I. ricinus nymphs by A. semi-nested PCR. Lines D0, D7, and D16 represent blood samples taken on days 0, 7, and 16 after tick placement respectively; T+ – B. birtlesii DNA; M – molecular mass marker. B. immunofluorescence assay. D-0, D-7, and D-16 represent blood samples taken on days 0, 7, and 16 after tick placement respectively.
Mentions: PCR detected the presence of Bartonella spp. DNA in Schneider Drosophila medium inoculated with blood samples from each of the three mice on days seven and 16, but not on day zero (Figure 1A). All amplified fragments were 100% identical to the B. birtlesii corresponding fragment of the 16S rRNA gene (accession number AF204274). B. birtlesii was also detected in the same samples by immunofluorescence (Figure 1B). This confirms the presence and viability of B. birtlesii bacteria in the blood of mice fed upon by B. birtlesii-infected ticks.

Bottom Line: We used a murine model to assess the vector competence of Ixodes ricinus for Bartonella birtlesii.Larval and nymphal I. ricinus were fed on a B. birtlesii-infected mouse.Consequently, bartonelloses should be now included in the differential diagnosis for patients exposed to tick bites.

View Article: PubMed Central - PubMed

Affiliation: Institut National de la Recherche Agronomique, USC INRA Bartonella-Tiques, ANSES, Maisons-Alfort, France.

ABSTRACT
Bartonella spp. are facultative intracellular vector-borne bacteria associated with several emerging diseases in humans and animals all over the world. The potential for involvement of ticks in transmission of Bartonella spp. has been heartily debated for many years. However, most of the data supporting bartonellae transmission by ticks come from molecular and serological epidemiological surveys in humans and animals providing only indirect evidences without a direct proof of tick vector competence for transmission of bartonellae. We used a murine model to assess the vector competence of Ixodes ricinus for Bartonella birtlesii. Larval and nymphal I. ricinus were fed on a B. birtlesii-infected mouse. The nymphs successfully transmitted B. birtlesii to naïve mice as bacteria were recovered from both the mouse blood and liver at seven and 16 days after tick bites. The female adults successfully emitted the bacteria into uninfected blood after three or more days of tick attachment, when fed via membrane feeding system. Histochemical staining showed the presence of bacteria in salivary glands and muscle tissues of partially engorged adult ticks, which had molted from the infected nymphs. These results confirm the vector competence of I. ricinus for B. birtlesii and represent the first in vivo demonstration of a Bartonella sp. transmission by ticks. Consequently, bartonelloses should be now included in the differential diagnosis for patients exposed to tick bites.

Show MeSH
Related in: MedlinePlus