Limits...
Dynamic analysis of Ca²+ level during bovine oocytes maturation and early embryonic development.

Liang SL, Zhao QJ, Li XC, Jin YP, Wang YP, Su XH, Guan WJ, Ma YH - J. Vet. Sci. (2011)

Bottom Line: However, Ca(2+) was distributed in the donor nucleus at 10 h and it was distributed throughout the blastomere in the 2-8 cell embryos.In this study, Ca(2+) showed significant fluctuations with regularity of IVF and SCNT groups, but PA did not.Systematic investigation of the Ca(2+) location and distribution changes during oocyte maturation and early embryo development processes should facilitate a better understanding of the mechanisms involved in oocyte maturation, reconstructed embryo activation and development, ultimately improving the reconstructed embryo development rate.

View Article: PubMed Central - PubMed

Affiliation: College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China.

ABSTRACT
Mammalian oocyte maturation and early embryo development processes are Ca(2+)-dependent. In this study, we used confocal microscopy to investigate the distribution pattern of Ca(2+) and its dynamic changes in the processes of bovine oocytes maturation, in vitro fertilization (IVF), parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) embryo development. During the germinal vesicle (GV) and GV breakdown stage, Ca(2+) was distributed in the cortical ooplasm and throughout the oocytes from the MI to MII stage. In IVF embryos, Ca(2+) was distributed in the cortical ooplasm before the formation of the pronucleus. In 4-8 cell embryos and morulas, Ca(2+) was present throughout the blastomere. In PA embryos, Ca(2+) was distributed throughout the blastomere at 48 h, similar to in the 4-cell and 8-cell phase and the morula. At 6 h after activation, there was almost no distribution of Ca(2+) in the SCNT embryos. However, Ca(2+) was distributed in the donor nucleus at 10 h and it was distributed throughout the blastomere in the 2-8 cell embryos. In this study, Ca(2+) showed significant fluctuations with regularity of IVF and SCNT groups, but PA did not. Systematic investigation of the Ca(2+) location and distribution changes during oocyte maturation and early embryo development processes should facilitate a better understanding of the mechanisms involved in oocyte maturation, reconstructed embryo activation and development, ultimately improving the reconstructed embryo development rate.

Show MeSH

Related in: MedlinePlus

Comparison of Ca2+ fluorescence intensity in bovine IVF embryos at different times. p < 0.05 (*) and p < 0.01 (**) indicate significant difference from other groups.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3104167&req=5

Figure 4: Comparison of Ca2+ fluorescence intensity in bovine IVF embryos at different times. p < 0.05 (*) and p < 0.01 (**) indicate significant difference from other groups.

Mentions: At 6 h after IVF, the [Ca2+]i was lowest, after which it increased constantly to a maximum in the 4-cell stage (p < 0.01) and then declined to a stable level. [Ca2+]i did not differ among the IVF 72 h, 120 h and 140 h groups (p > 0.01). Additionally, although the [Ca2+]i differed among the 14 h, 24 h and 160 h groups [Ca2+]i, this difference was not significant (p > 0.01) (Fig. 4).


Dynamic analysis of Ca²+ level during bovine oocytes maturation and early embryonic development.

Liang SL, Zhao QJ, Li XC, Jin YP, Wang YP, Su XH, Guan WJ, Ma YH - J. Vet. Sci. (2011)

Comparison of Ca2+ fluorescence intensity in bovine IVF embryos at different times. p < 0.05 (*) and p < 0.01 (**) indicate significant difference from other groups.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3104167&req=5

Figure 4: Comparison of Ca2+ fluorescence intensity in bovine IVF embryos at different times. p < 0.05 (*) and p < 0.01 (**) indicate significant difference from other groups.
Mentions: At 6 h after IVF, the [Ca2+]i was lowest, after which it increased constantly to a maximum in the 4-cell stage (p < 0.01) and then declined to a stable level. [Ca2+]i did not differ among the IVF 72 h, 120 h and 140 h groups (p > 0.01). Additionally, although the [Ca2+]i differed among the 14 h, 24 h and 160 h groups [Ca2+]i, this difference was not significant (p > 0.01) (Fig. 4).

Bottom Line: However, Ca(2+) was distributed in the donor nucleus at 10 h and it was distributed throughout the blastomere in the 2-8 cell embryos.In this study, Ca(2+) showed significant fluctuations with regularity of IVF and SCNT groups, but PA did not.Systematic investigation of the Ca(2+) location and distribution changes during oocyte maturation and early embryo development processes should facilitate a better understanding of the mechanisms involved in oocyte maturation, reconstructed embryo activation and development, ultimately improving the reconstructed embryo development rate.

View Article: PubMed Central - PubMed

Affiliation: College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China.

ABSTRACT
Mammalian oocyte maturation and early embryo development processes are Ca(2+)-dependent. In this study, we used confocal microscopy to investigate the distribution pattern of Ca(2+) and its dynamic changes in the processes of bovine oocytes maturation, in vitro fertilization (IVF), parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) embryo development. During the germinal vesicle (GV) and GV breakdown stage, Ca(2+) was distributed in the cortical ooplasm and throughout the oocytes from the MI to MII stage. In IVF embryos, Ca(2+) was distributed in the cortical ooplasm before the formation of the pronucleus. In 4-8 cell embryos and morulas, Ca(2+) was present throughout the blastomere. In PA embryos, Ca(2+) was distributed throughout the blastomere at 48 h, similar to in the 4-cell and 8-cell phase and the morula. At 6 h after activation, there was almost no distribution of Ca(2+) in the SCNT embryos. However, Ca(2+) was distributed in the donor nucleus at 10 h and it was distributed throughout the blastomere in the 2-8 cell embryos. In this study, Ca(2+) showed significant fluctuations with regularity of IVF and SCNT groups, but PA did not. Systematic investigation of the Ca(2+) location and distribution changes during oocyte maturation and early embryo development processes should facilitate a better understanding of the mechanisms involved in oocyte maturation, reconstructed embryo activation and development, ultimately improving the reconstructed embryo development rate.

Show MeSH
Related in: MedlinePlus