Limits...
The cell surface proteome of human mesenchymal stromal cells.

Niehage C, Steenblock C, Pursche T, Bornhäuser M, Corbeil D, Hoflack B - PLoS ONE (2011)

Bottom Line: The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis.Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously.Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention.

View Article: PubMed Central - PubMed

Affiliation: Biotechnology Center, Dresden University of Technology, Dresden, Germany.

ABSTRACT

Background: Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers.

Methodology/principal findings: To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316) were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously.

Conclusions/significance: Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention.

Show MeSH

Related in: MedlinePlus

Comparison of hMSC and hESC cell surface protein profiles.A. Comparison of the membrane protein profiles of hMSCs (our study) and hESCs according to [34]. The diagram shows unique and common membrane proteins of hESCs (left) and hMSCs (right). B. Distribution and functional clustering of common membrane proteins between hESCs and hMSCs.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3102717&req=5

pone-0020399-g003: Comparison of hMSC and hESC cell surface protein profiles.A. Comparison of the membrane protein profiles of hMSCs (our study) and hESCs according to [34]. The diagram shows unique and common membrane proteins of hESCs (left) and hMSCs (right). B. Distribution and functional clustering of common membrane proteins between hESCs and hMSCs.

Mentions: Our comprehensive analysis of the cell surface proteome of adult hMSCs allowed us to already establish with high confidence similarities and differences/changes in cell surface proteomes of different cell types. Of particular interest is the proteomic surface profile of hESCs, which comprises 242 membrane proteins identified thus far [34]. This comparison showed that surprisingly hMSCs and hESCs have only 74 proteins in common, whereas 97 and 168 proteins are unique for hMSCs and hESCs, respectively (Figure 3A and Table S3). Among these 74 common proteins, adhesion molecules, signaling receptors, and transporters are the most representative when compared to the total number of surface membrane proteins identified in hMSCs and hESCs (Figures 1 and 3B). Only 16 adhesion molecules (incl. 8 integrins (α 1, 2, 3, 5, 7, V, and β 1 and 5 chains)) among the 33 cell adhesion molecules identified on hMSCs were found on hESCs, thus suggesting that the other unique cell adhesion molecules could be considered as important molecules for specifying the proper niches of the corresponding stem cells. The same remark could be made for the proteoglycans detected at the cell surface of hMSCs and hESCs. Only 10 out of the 26 signaling receptors detected on hMSCs were found at the surface of hESCs such as EGF receptor, Ephrin type A receptor 2, or Ephrin type B receptor 4, thereby suggesting that the other signaling receptors are important for maintaining the stemness or determining the fate of hMSCs or hESCs. Finally, it is interesting to note that hMSCs and hESCs also express different CD markers (Table 1). Among the 41 hMSC CD markers, 16 of them (CD13, 47, 54, 61, etc.) were only detected on hMSCs and not on hESCs.


The cell surface proteome of human mesenchymal stromal cells.

Niehage C, Steenblock C, Pursche T, Bornhäuser M, Corbeil D, Hoflack B - PLoS ONE (2011)

Comparison of hMSC and hESC cell surface protein profiles.A. Comparison of the membrane protein profiles of hMSCs (our study) and hESCs according to [34]. The diagram shows unique and common membrane proteins of hESCs (left) and hMSCs (right). B. Distribution and functional clustering of common membrane proteins between hESCs and hMSCs.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3102717&req=5

pone-0020399-g003: Comparison of hMSC and hESC cell surface protein profiles.A. Comparison of the membrane protein profiles of hMSCs (our study) and hESCs according to [34]. The diagram shows unique and common membrane proteins of hESCs (left) and hMSCs (right). B. Distribution and functional clustering of common membrane proteins between hESCs and hMSCs.
Mentions: Our comprehensive analysis of the cell surface proteome of adult hMSCs allowed us to already establish with high confidence similarities and differences/changes in cell surface proteomes of different cell types. Of particular interest is the proteomic surface profile of hESCs, which comprises 242 membrane proteins identified thus far [34]. This comparison showed that surprisingly hMSCs and hESCs have only 74 proteins in common, whereas 97 and 168 proteins are unique for hMSCs and hESCs, respectively (Figure 3A and Table S3). Among these 74 common proteins, adhesion molecules, signaling receptors, and transporters are the most representative when compared to the total number of surface membrane proteins identified in hMSCs and hESCs (Figures 1 and 3B). Only 16 adhesion molecules (incl. 8 integrins (α 1, 2, 3, 5, 7, V, and β 1 and 5 chains)) among the 33 cell adhesion molecules identified on hMSCs were found on hESCs, thus suggesting that the other unique cell adhesion molecules could be considered as important molecules for specifying the proper niches of the corresponding stem cells. The same remark could be made for the proteoglycans detected at the cell surface of hMSCs and hESCs. Only 10 out of the 26 signaling receptors detected on hMSCs were found at the surface of hESCs such as EGF receptor, Ephrin type A receptor 2, or Ephrin type B receptor 4, thereby suggesting that the other signaling receptors are important for maintaining the stemness or determining the fate of hMSCs or hESCs. Finally, it is interesting to note that hMSCs and hESCs also express different CD markers (Table 1). Among the 41 hMSC CD markers, 16 of them (CD13, 47, 54, 61, etc.) were only detected on hMSCs and not on hESCs.

Bottom Line: The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis.Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously.Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention.

View Article: PubMed Central - PubMed

Affiliation: Biotechnology Center, Dresden University of Technology, Dresden, Germany.

ABSTRACT

Background: Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers.

Methodology/principal findings: To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316) were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously.

Conclusions/significance: Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention.

Show MeSH
Related in: MedlinePlus