Limits...
A multi gene sequence-based phylogeny of the Musaceae (banana) family.

Christelová P, Valárik M, Hřibová E, De Langhe E, Doležel J - BMC Evol. Biol. (2011)

Bottom Line: Nucleotide variation within the sample confirmed the close relationship of Australimusa and Callimusa sections and showed that Eumusa and Rhodochlamys sections are not reciprocally monophyletic, which supports the previous claims for the merger between the two latter sections.The gene sequence-based phylogeny presented here provides a substantial insight into the course of speciation within the Musaceae.An understanding of the main phylogenetic relationships between banana species will help to fine-tune the taxonomy of Musaceae.

View Article: PubMed Central - HTML - PubMed

Affiliation: Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, 772 00 Olomouc, Czech Republic.

ABSTRACT

Background: The classification of the Musaceae (banana) family species and their phylogenetic inter-relationships remain controversial, in part due to limited nucleotide information to complement the morphological and physiological characters. In this work the evolutionary relationships within the Musaceae family were studied using 13 species and DNA sequences obtained from a set of 19 unlinked nuclear genes.

Results: The 19 gene sequences represented a sample of ~16 kb of genome sequence (~73% intronic). The sequence data were also used to obtain estimates for the divergence times of the Musaceae genera and Musa sections. Nucleotide variation within the sample confirmed the close relationship of Australimusa and Callimusa sections and showed that Eumusa and Rhodochlamys sections are not reciprocally monophyletic, which supports the previous claims for the merger between the two latter sections. Divergence time analysis supported the previous dating of the Musaceae crown age to the Cretaceous/Tertiary boundary (~ 69 Mya), and the evolution of Musa to ~50 Mya. The first estimates for the divergence times of the four Musa sections were also obtained.

Conclusions: The gene sequence-based phylogeny presented here provides a substantial insight into the course of speciation within the Musaceae. An understanding of the main phylogenetic relationships between banana species will help to fine-tune the taxonomy of Musaceae.

Show MeSH
A phylogenetic tree based on dataset B sequence, with S. nicolai as outgroup. Values above and below the branches indicate bootstrap support for MP and ML, and the posterior BI probability, respectively. Clade I: Eumusa (M. acuminata [A genome] and M. balbisiana [B genome]) plus Rhodochlamys (M. mannii and M. ornata) entries. Clade II: Australimusa (M. textilis, M. maclayi and Fe'i) plus Callimusa (M. coccinea and M. beccarii). entries. Clade III: Musella + Ensete genus. The lettering (A-J) attached to the secondary nodes refers to divergence times, as specified in Table 5.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3102628&req=5

Figure 3: A phylogenetic tree based on dataset B sequence, with S. nicolai as outgroup. Values above and below the branches indicate bootstrap support for MP and ML, and the posterior BI probability, respectively. Clade I: Eumusa (M. acuminata [A genome] and M. balbisiana [B genome]) plus Rhodochlamys (M. mannii and M. ornata) entries. Clade II: Australimusa (M. textilis, M. maclayi and Fe'i) plus Callimusa (M. coccinea and M. beccarii). entries. Clade III: Musella + Ensete genus. The lettering (A-J) attached to the secondary nodes refers to divergence times, as specified in Table 5.

Mentions: The MP analysis of dataset B also produced a single most parsimonious tree (length = 2253; CI = 0.7536 excluding non-informative characters; RI = 0.8483; RC = 0.7779) with high bootstrap support for all nodes. The same topology was supported by both the ML and BI analyses (Figure 3), and was the same as emerged from the BI analysis of dataset A (Additional File 3). A similar phylogeny was suggested when the individual gene fragments were analyzed separately with the S. nicolai sequence as the outgroup (Additional File 2). Thus the choice of outgroup was clearly responsible for the conflicting phylogenies. Various Zingiberales (Strelitziaceae, Heliconiaceae, Zingiberaceae) species have been selected as outgroups in other taxonomic studies of the Musaceae [8,31,69,70], and some of these have questioned the position of Musella as a separate genus. Nevertheless, the evolutionary relationships within Musa (clades I + II, Figure 2 and 3) were not affected in either dataset by the choice of either outgroup or rooting method.


A multi gene sequence-based phylogeny of the Musaceae (banana) family.

Christelová P, Valárik M, Hřibová E, De Langhe E, Doležel J - BMC Evol. Biol. (2011)

A phylogenetic tree based on dataset B sequence, with S. nicolai as outgroup. Values above and below the branches indicate bootstrap support for MP and ML, and the posterior BI probability, respectively. Clade I: Eumusa (M. acuminata [A genome] and M. balbisiana [B genome]) plus Rhodochlamys (M. mannii and M. ornata) entries. Clade II: Australimusa (M. textilis, M. maclayi and Fe'i) plus Callimusa (M. coccinea and M. beccarii). entries. Clade III: Musella + Ensete genus. The lettering (A-J) attached to the secondary nodes refers to divergence times, as specified in Table 5.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3102628&req=5

Figure 3: A phylogenetic tree based on dataset B sequence, with S. nicolai as outgroup. Values above and below the branches indicate bootstrap support for MP and ML, and the posterior BI probability, respectively. Clade I: Eumusa (M. acuminata [A genome] and M. balbisiana [B genome]) plus Rhodochlamys (M. mannii and M. ornata) entries. Clade II: Australimusa (M. textilis, M. maclayi and Fe'i) plus Callimusa (M. coccinea and M. beccarii). entries. Clade III: Musella + Ensete genus. The lettering (A-J) attached to the secondary nodes refers to divergence times, as specified in Table 5.
Mentions: The MP analysis of dataset B also produced a single most parsimonious tree (length = 2253; CI = 0.7536 excluding non-informative characters; RI = 0.8483; RC = 0.7779) with high bootstrap support for all nodes. The same topology was supported by both the ML and BI analyses (Figure 3), and was the same as emerged from the BI analysis of dataset A (Additional File 3). A similar phylogeny was suggested when the individual gene fragments were analyzed separately with the S. nicolai sequence as the outgroup (Additional File 2). Thus the choice of outgroup was clearly responsible for the conflicting phylogenies. Various Zingiberales (Strelitziaceae, Heliconiaceae, Zingiberaceae) species have been selected as outgroups in other taxonomic studies of the Musaceae [8,31,69,70], and some of these have questioned the position of Musella as a separate genus. Nevertheless, the evolutionary relationships within Musa (clades I + II, Figure 2 and 3) were not affected in either dataset by the choice of either outgroup or rooting method.

Bottom Line: Nucleotide variation within the sample confirmed the close relationship of Australimusa and Callimusa sections and showed that Eumusa and Rhodochlamys sections are not reciprocally monophyletic, which supports the previous claims for the merger between the two latter sections.The gene sequence-based phylogeny presented here provides a substantial insight into the course of speciation within the Musaceae.An understanding of the main phylogenetic relationships between banana species will help to fine-tune the taxonomy of Musaceae.

View Article: PubMed Central - HTML - PubMed

Affiliation: Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, 772 00 Olomouc, Czech Republic.

ABSTRACT

Background: The classification of the Musaceae (banana) family species and their phylogenetic inter-relationships remain controversial, in part due to limited nucleotide information to complement the morphological and physiological characters. In this work the evolutionary relationships within the Musaceae family were studied using 13 species and DNA sequences obtained from a set of 19 unlinked nuclear genes.

Results: The 19 gene sequences represented a sample of ~16 kb of genome sequence (~73% intronic). The sequence data were also used to obtain estimates for the divergence times of the Musaceae genera and Musa sections. Nucleotide variation within the sample confirmed the close relationship of Australimusa and Callimusa sections and showed that Eumusa and Rhodochlamys sections are not reciprocally monophyletic, which supports the previous claims for the merger between the two latter sections. Divergence time analysis supported the previous dating of the Musaceae crown age to the Cretaceous/Tertiary boundary (~ 69 Mya), and the evolution of Musa to ~50 Mya. The first estimates for the divergence times of the four Musa sections were also obtained.

Conclusions: The gene sequence-based phylogeny presented here provides a substantial insight into the course of speciation within the Musaceae. An understanding of the main phylogenetic relationships between banana species will help to fine-tune the taxonomy of Musaceae.

Show MeSH