Limits...
Oral Delivery of DMAB-Modified Docetaxel-Loaded PLGA-TPGS Nanoparticles for Cancer Chemotherapy

View Article: PubMed Central - HTML

ABSTRACT

Three types of nanoparticle formulation from biodegradable PLGA-TPGS random copolymer were developed in this research for oral administration of anticancer drugs, which include DMAB-modified PLGA nanoparticles, unmodified PLGA-TPGS nanoparticles and DMAB-modified PLGA-TPGS nanoparticles. Firstly, the PLGA-TPGS random copolymer was synthesized and characterized. DMAB was used to increase retention time at the cell surface, thus increasing the chances of particle uptake and improving oral drug bioavailability. Nanoparticles were found to be of spherical shape with an average particle diameter of around 250 nm. The surface charge of PLGA-TPGS nanoparticles was changed to positive after DMAB modification. The results also showed that the DMAB-modified PLGA-TPGS nanoparticles have significantly higher level of the cellular uptake than that of DMAB-modified PLGA nanoparticles and unmodified PLGA-TPGS nanoparticles. In vitro, cytotoxicity experiment showed advantages of the DMAB-modified PLGA-TPGS nanoparticle formulation over commercial Taxotere® in terms of cytotoxicity against MCF-7 cells. In conclusion, oral chemotherapy by DMAB-modified PLGA-TPGS nanoparticle formulation is an attractive and promising treatment option for patients.

No MeSH data available.


Typical 1H-NMR spectra of PLGA-TPGS random copolymer.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3102336&req=5

Figure 1: Typical 1H-NMR spectra of PLGA-TPGS random copolymer.

Mentions: The chemical structure of the PLGA-TPGS random copolymer synthesized in our research can be found from our earlier work [21]. The Characterization of 1H NMR and GPC is tabulated in Table 1. The weight-averaged and number-averaged molecular weight of the PLGA-TPGS random copolymer with PLGA:TPGS = 90:10 were determined to be 28,530 and 21,944, respectively, with polydispersity of 1.30. As shown in Figure 1, the copolymer was successfully synthesized at the characteristic peak of 5.2 and 1.69 ppm for PLA, 4.82 ppm for PGA and at that of 3.65 ppm for TPGS, respectively.


Oral Delivery of DMAB-Modified Docetaxel-Loaded PLGA-TPGS Nanoparticles for Cancer Chemotherapy
Typical 1H-NMR spectra of PLGA-TPGS random copolymer.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3102336&req=5

Figure 1: Typical 1H-NMR spectra of PLGA-TPGS random copolymer.
Mentions: The chemical structure of the PLGA-TPGS random copolymer synthesized in our research can be found from our earlier work [21]. The Characterization of 1H NMR and GPC is tabulated in Table 1. The weight-averaged and number-averaged molecular weight of the PLGA-TPGS random copolymer with PLGA:TPGS = 90:10 were determined to be 28,530 and 21,944, respectively, with polydispersity of 1.30. As shown in Figure 1, the copolymer was successfully synthesized at the characteristic peak of 5.2 and 1.69 ppm for PLA, 4.82 ppm for PGA and at that of 3.65 ppm for TPGS, respectively.

View Article: PubMed Central - HTML

ABSTRACT

Three types of nanoparticle formulation from biodegradable PLGA-TPGS random copolymer were developed in this research for oral administration of anticancer drugs, which include DMAB-modified PLGA nanoparticles, unmodified PLGA-TPGS nanoparticles and DMAB-modified PLGA-TPGS nanoparticles. Firstly, the PLGA-TPGS random copolymer was synthesized and characterized. DMAB was used to increase retention time at the cell surface, thus increasing the chances of particle uptake and improving oral drug bioavailability. Nanoparticles were found to be of spherical shape with an average particle diameter of around 250 nm. The surface charge of PLGA-TPGS nanoparticles was changed to positive after DMAB modification. The results also showed that the DMAB-modified PLGA-TPGS nanoparticles have significantly higher level of the cellular uptake than that of DMAB-modified PLGA nanoparticles and unmodified PLGA-TPGS nanoparticles. In vitro, cytotoxicity experiment showed advantages of the DMAB-modified PLGA-TPGS nanoparticle formulation over commercial Taxotere® in terms of cytotoxicity against MCF-7 cells. In conclusion, oral chemotherapy by DMAB-modified PLGA-TPGS nanoparticle formulation is an attractive and promising treatment option for patients.

No MeSH data available.