Limits...
Interactions of human endothelial and multipotent mesenchymal stem cells in cocultures.

Ern C, Krump-Konvalinkova V, Docheva D, Schindler S, Rossmann O, Böcker W, Mutschler W, Schieker M - Open Biomed Eng J (2010)

Bottom Line: Current strategies for tissue engineering of bone rely on the implantation of scaffolds, colonized with human mesenchymal stem cells (hMSC), into a recipient.A major limitation is the lack of blood vessels.One approach to enhance the scaffold vascularisation is to supply the scaffolds with endothelial cells (EC).The main goal of this study was to establish a coculture system of hMSC and EC for the purposes of bone tissue engineering.

View Article: PubMed Central - PubMed

Affiliation: Experimental Surgery and Regenerative Medicine, Department of Surgery, University of Munich (LMU), Munich, Germany.

ABSTRACT
Current strategies for tissue engineering of bone rely on the implantation of scaffolds, colonized with human mesenchymal stem cells (hMSC), into a recipient. A major limitation is the lack of blood vessels. One approach to enhance the scaffold vascularisation is to supply the scaffolds with endothelial cells (EC).The main goal of this study was to establish a coculture system of hMSC and EC for the purposes of bone tissue engineering. Therefore, the cell behaviour, proliferation and differentiation capacity in various cell culture media as well as cell interactions in the cocultures were evaluated.The differentiation capacity of hMSC along osteogenic, chondrogenic, and adipogenic lineage was impaired in EC medium while in a mixed EC and hMSC media, hMSC maintained osteogenic differentiation. In order to identify and trace EC in the cocultures, EC were transduced with eGFP. Using time-lapse imaging, we observed that hMSC and EC actively migrated towards cells of their own type and formed separate clusters in long term cocultures. The scarcity of hMSC and EC contacts in the cocultures suggest the influence of growth factor-mediated cell interactions and points to the necessity of further optimization of the coculture conditions.

No MeSH data available.


Related in: MedlinePlus

Both hMSC and EC actively migrate to build clusters. The behaviour of EGFP-transduced hMSC (green fluorescence) and EC in the cocultures was evaluated 30h after plating. The cell migration was observed on time-lapse pictures taken every 5 min for 12h. The arrow indicates a single hMSC migrating towards another hMSC that is marked with a star. Bar represents 100 µm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3102321&req=5

Figure 8: Both hMSC and EC actively migrate to build clusters. The behaviour of EGFP-transduced hMSC (green fluorescence) and EC in the cocultures was evaluated 30h after plating. The cell migration was observed on time-lapse pictures taken every 5 min for 12h. The arrow indicates a single hMSC migrating towards another hMSC that is marked with a star. Bar represents 100 µm.

Mentions: By time-lapse imaging, we could observe both hMSC and EC actively migrating to join the cells of the same type to finally form clusters (Fig. 8). We could observe that, after adhesion followed by a period of active orientation of several hours, the cells started to migrate to join the cells of the same type (Fig. 8).


Interactions of human endothelial and multipotent mesenchymal stem cells in cocultures.

Ern C, Krump-Konvalinkova V, Docheva D, Schindler S, Rossmann O, Böcker W, Mutschler W, Schieker M - Open Biomed Eng J (2010)

Both hMSC and EC actively migrate to build clusters. The behaviour of EGFP-transduced hMSC (green fluorescence) and EC in the cocultures was evaluated 30h after plating. The cell migration was observed on time-lapse pictures taken every 5 min for 12h. The arrow indicates a single hMSC migrating towards another hMSC that is marked with a star. Bar represents 100 µm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3102321&req=5

Figure 8: Both hMSC and EC actively migrate to build clusters. The behaviour of EGFP-transduced hMSC (green fluorescence) and EC in the cocultures was evaluated 30h after plating. The cell migration was observed on time-lapse pictures taken every 5 min for 12h. The arrow indicates a single hMSC migrating towards another hMSC that is marked with a star. Bar represents 100 µm.
Mentions: By time-lapse imaging, we could observe both hMSC and EC actively migrating to join the cells of the same type to finally form clusters (Fig. 8). We could observe that, after adhesion followed by a period of active orientation of several hours, the cells started to migrate to join the cells of the same type (Fig. 8).

Bottom Line: Current strategies for tissue engineering of bone rely on the implantation of scaffolds, colonized with human mesenchymal stem cells (hMSC), into a recipient.A major limitation is the lack of blood vessels.One approach to enhance the scaffold vascularisation is to supply the scaffolds with endothelial cells (EC).The main goal of this study was to establish a coculture system of hMSC and EC for the purposes of bone tissue engineering.

View Article: PubMed Central - PubMed

Affiliation: Experimental Surgery and Regenerative Medicine, Department of Surgery, University of Munich (LMU), Munich, Germany.

ABSTRACT
Current strategies for tissue engineering of bone rely on the implantation of scaffolds, colonized with human mesenchymal stem cells (hMSC), into a recipient. A major limitation is the lack of blood vessels. One approach to enhance the scaffold vascularisation is to supply the scaffolds with endothelial cells (EC).The main goal of this study was to establish a coculture system of hMSC and EC for the purposes of bone tissue engineering. Therefore, the cell behaviour, proliferation and differentiation capacity in various cell culture media as well as cell interactions in the cocultures were evaluated.The differentiation capacity of hMSC along osteogenic, chondrogenic, and adipogenic lineage was impaired in EC medium while in a mixed EC and hMSC media, hMSC maintained osteogenic differentiation. In order to identify and trace EC in the cocultures, EC were transduced with eGFP. Using time-lapse imaging, we observed that hMSC and EC actively migrated towards cells of their own type and formed separate clusters in long term cocultures. The scarcity of hMSC and EC contacts in the cocultures suggest the influence of growth factor-mediated cell interactions and points to the necessity of further optimization of the coculture conditions.

No MeSH data available.


Related in: MedlinePlus