Limits...
Rapid identification of Aspergillus fumigatus within the section Fumigati.

Serrano R, Gusmão L, Amorim A, Araujo R - BMC Microbiol. (2011)

Bottom Line: PCR amplification of βtub and rodA fragments resulted in a distinctive electrophoretic pattern in A. fumigatus and N. udagawae.The polymorphisms found in the smallest amplified sequence of βtub (153 bp) and rodA (103 bp) genes were then compared among and within species of this taxonomic section. βtub was able to differentiate among 13 individual species and two groups of species that included the pathogenic fungus A. lentulus.The assay described in the present study proved to be specific and highly reproducible, representing a fast and economic way of targeting molecular identification of the relevant mould, A. fumigatus, in clinical laboratories.

View Article: PubMed Central - HTML - PubMed

Affiliation: IPATIMUP, Institute of Molecular Pathology and Immunology of University of Porto, Rua Dr, Roberto Frias s/n, 4200-465 Porto, Portugal.

ABSTRACT

Background: New fungal species that are morphologically similar to Aspergillus fumigatus were recently described and included in section Fumigati. Misidentification of such fungal species, particularly of the human pathogens, Aspergillus lentulus, Neosartorya fischeri, Neosartorya hiratsukae, Neosartorya pseudofischeri and Neosartorya udagawae, has been increasingly reported by numerous clinical labs. Nevertheless, A. fumigatus still accounts for more than 90% of all invasive aspergillosis cases. The purpose of the present study was to develop a rapid method for the molecular identification of A. fumigatus to distinguish it from other species within the section Fumigati.

Results: A multiplex PCR was developed using prior information based on β-tubulin (βtub) and rodlet A (rodA) partial gene sequences. PCR amplification of βtub and rodA fragments resulted in a distinctive electrophoretic pattern in A. fumigatus and N. udagawae. The polymorphisms found in the smallest amplified sequence of βtub (153 bp) and rodA (103 bp) genes were then compared among and within species of this taxonomic section. βtub was able to differentiate among 13 individual species and two groups of species that included the pathogenic fungus A. lentulus. A more limited number of sequences were available for rodA; nevertheless, we were able to distinguish Aspergillus viridinutans, N. hiratsukae and N. udagawae.

Conclusions: The assay described in the present study proved to be specific and highly reproducible, representing a fast and economic way of targeting molecular identification of the relevant mould, A. fumigatus, in clinical laboratories.

Show MeSH

Related in: MedlinePlus

Alignment of β-tubulin sequences from species of section Fumigati.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3102036&req=5

Figure 2: Alignment of β-tubulin sequences from species of section Fumigati.

Mentions: The polymorphisms found in the small gene fragments of βtub (153 bp) and rodA (103 bp) were compared among and between species of section Fumigati. A group of 425 partial sequences of βtub and rodA from fungal species of section Fumigati available at GenBank and EMBL-Bank were downloaded (annotation numbers are available as supplemental data; see additional file 1). A detailed alignment of βtub and rodA sequences of the species included in section Fumigati is available in Figures 2 and 3. The most relevant and exclusive polymorphic sites for each species within the section Fumigati were registered. The 153 bp region of βtub was able to differentiate 13 fungal species of section Fumigati (A. fumigatus, A. fumigatiaffinis, A. novofumigatus, N. aurata, N. aureola, N. hiratsukae, N. fennelliae, N. fischeri, N. pseudofischeri, N. spathulata, N. stramenia, N. tatenoi and N. udagawae) and two groups of species (the first with A. brevipes, A. duricaulis and N. quadricinta; and the second with A. fumisynnematus and A. lentulus). The polymorphisms that were capable of distinguishing the pathogenic moulds of section Fumigati are detailed in Table 2. A more limited number of sequences were available for rodA (105 bp) within the section Fumigati; nevertheless, this small portion of DNA allowed the distinction of A. viridinutans, N. hiratsukae and N. udagawae (Table 2). Sequencing of a rodA fragment revealed no polymorphisms in A. novofumigatus (the information for this species was not available from the NCBI or EMBL banks).


Rapid identification of Aspergillus fumigatus within the section Fumigati.

Serrano R, Gusmão L, Amorim A, Araujo R - BMC Microbiol. (2011)

Alignment of β-tubulin sequences from species of section Fumigati.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3102036&req=5

Figure 2: Alignment of β-tubulin sequences from species of section Fumigati.
Mentions: The polymorphisms found in the small gene fragments of βtub (153 bp) and rodA (103 bp) were compared among and between species of section Fumigati. A group of 425 partial sequences of βtub and rodA from fungal species of section Fumigati available at GenBank and EMBL-Bank were downloaded (annotation numbers are available as supplemental data; see additional file 1). A detailed alignment of βtub and rodA sequences of the species included in section Fumigati is available in Figures 2 and 3. The most relevant and exclusive polymorphic sites for each species within the section Fumigati were registered. The 153 bp region of βtub was able to differentiate 13 fungal species of section Fumigati (A. fumigatus, A. fumigatiaffinis, A. novofumigatus, N. aurata, N. aureola, N. hiratsukae, N. fennelliae, N. fischeri, N. pseudofischeri, N. spathulata, N. stramenia, N. tatenoi and N. udagawae) and two groups of species (the first with A. brevipes, A. duricaulis and N. quadricinta; and the second with A. fumisynnematus and A. lentulus). The polymorphisms that were capable of distinguishing the pathogenic moulds of section Fumigati are detailed in Table 2. A more limited number of sequences were available for rodA (105 bp) within the section Fumigati; nevertheless, this small portion of DNA allowed the distinction of A. viridinutans, N. hiratsukae and N. udagawae (Table 2). Sequencing of a rodA fragment revealed no polymorphisms in A. novofumigatus (the information for this species was not available from the NCBI or EMBL banks).

Bottom Line: PCR amplification of βtub and rodA fragments resulted in a distinctive electrophoretic pattern in A. fumigatus and N. udagawae.The polymorphisms found in the smallest amplified sequence of βtub (153 bp) and rodA (103 bp) genes were then compared among and within species of this taxonomic section. βtub was able to differentiate among 13 individual species and two groups of species that included the pathogenic fungus A. lentulus.The assay described in the present study proved to be specific and highly reproducible, representing a fast and economic way of targeting molecular identification of the relevant mould, A. fumigatus, in clinical laboratories.

View Article: PubMed Central - HTML - PubMed

Affiliation: IPATIMUP, Institute of Molecular Pathology and Immunology of University of Porto, Rua Dr, Roberto Frias s/n, 4200-465 Porto, Portugal.

ABSTRACT

Background: New fungal species that are morphologically similar to Aspergillus fumigatus were recently described and included in section Fumigati. Misidentification of such fungal species, particularly of the human pathogens, Aspergillus lentulus, Neosartorya fischeri, Neosartorya hiratsukae, Neosartorya pseudofischeri and Neosartorya udagawae, has been increasingly reported by numerous clinical labs. Nevertheless, A. fumigatus still accounts for more than 90% of all invasive aspergillosis cases. The purpose of the present study was to develop a rapid method for the molecular identification of A. fumigatus to distinguish it from other species within the section Fumigati.

Results: A multiplex PCR was developed using prior information based on β-tubulin (βtub) and rodlet A (rodA) partial gene sequences. PCR amplification of βtub and rodA fragments resulted in a distinctive electrophoretic pattern in A. fumigatus and N. udagawae. The polymorphisms found in the smallest amplified sequence of βtub (153 bp) and rodA (103 bp) genes were then compared among and within species of this taxonomic section. βtub was able to differentiate among 13 individual species and two groups of species that included the pathogenic fungus A. lentulus. A more limited number of sequences were available for rodA; nevertheless, we were able to distinguish Aspergillus viridinutans, N. hiratsukae and N. udagawae.

Conclusions: The assay described in the present study proved to be specific and highly reproducible, representing a fast and economic way of targeting molecular identification of the relevant mould, A. fumigatus, in clinical laboratories.

Show MeSH
Related in: MedlinePlus