Limits...
The RUB Cage: Respiration-Ultrasonic Vocalizations-Behavior Acquisition Setup for Assessing Emotional Memory in Rats.

Hegoburu C, Shionoya K, Garcia S, Messaoudi B, Thévenet M, Mouly AM - Front Behav Neurosci (2011)

Bottom Line: In addition, the bottom of the plethysmograph was equipped with a shock-floor allowing foot-shock delivery, and the top received tubing for odor presentations.Using this experimental setup we first described the characteristics of respiration and USV in different behaviors and emotional states.The present setup may be valuable in providing a clearer appraisal of the physiological and behavioral changes that occur during acquisition as well as retrieval of emotional memory.

View Article: PubMed Central - PubMed

Affiliation: Team "Olfaction: From Coding to Memory", Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292 Lyon, France.

ABSTRACT
In animals, emotional memory is classically assessed through pavlovian fear conditioning in which a neutral novel stimulus (conditioned stimulus) is paired with an aversive unconditioned stimulus. After conditioning, the conditioned stimulus elicits a fear response characterized by a wide range of behavioral and physiological responses. Despite the existence of this large repertoire of responses, freezing behavior is often the sole parameter used for quantifying fear response, thus limiting emotional memory appraisal to this unique index. Interestingly, respiratory changes and ultrasonic vocalizations (USV) can occur during fear response, yet very few studies investigated the link between these different parameters and freezing. The aim of the present study was to design an experimental setup allowing the simultaneous recording of respiration, USV, and behavior (RUB cage), and the offline synchronization of the collected data for fine-grain second by second analysis. The setup consisted of a customized plethysmograph for respiration monitoring, equipped with a microphone capturing USV, and with four video cameras for behavior recording. In addition, the bottom of the plethysmograph was equipped with a shock-floor allowing foot-shock delivery, and the top received tubing for odor presentations. Using this experimental setup we first described the characteristics of respiration and USV in different behaviors and emotional states. Then we monitored these parameters during contextual fear conditioning and showed that they bring complementary information about the animal's anxiety state and the strength of aversive memory. The present setup may be valuable in providing a clearer appraisal of the physiological and behavioral changes that occur during acquisition as well as retrieval of emotional memory.

No MeSH data available.


Related in: MedlinePlus

Evolution of respiratory frequency with behavior. (A) Individual examples of respiratory traces observed during four stable behavioral states: odor sampling, exploration, freezing, and sleep. (B) Distribution of respiratory frequencies (probability distribution function: PDF) in the different behavioral states. The distributions were obtained with a 0.25 Hz bin. Insert: mean ± SEM frequency for each behavior. *Significant differences between all the mean values 2 by 2 (p < 0.001). (C) Distribution of respiratory frequencies during freezing in two subgroups: animals emitting USV (Fz USV) and animals emitting no USV (Fz no USV). Insert: mean ± SEM frequency for each subgroup. *Significant differences between the two values (p < 0.01). (D) Distribution of respiratory frequencies during call emission (intra-USV) or between calls (inter-USV). Insert: mean ± SEM frequency for each period. *Significant differences between the two values (p = 0.0005).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3101376&req=5

Figure 4: Evolution of respiratory frequency with behavior. (A) Individual examples of respiratory traces observed during four stable behavioral states: odor sampling, exploration, freezing, and sleep. (B) Distribution of respiratory frequencies (probability distribution function: PDF) in the different behavioral states. The distributions were obtained with a 0.25 Hz bin. Insert: mean ± SEM frequency for each behavior. *Significant differences between all the mean values 2 by 2 (p < 0.001). (C) Distribution of respiratory frequencies during freezing in two subgroups: animals emitting USV (Fz USV) and animals emitting no USV (Fz no USV). Insert: mean ± SEM frequency for each subgroup. *Significant differences between the two values (p < 0.01). (D) Distribution of respiratory frequencies during call emission (intra-USV) or between calls (inter-USV). Insert: mean ± SEM frequency for each period. *Significant differences between the two values (p = 0.0005).

Mentions: Visual inspection of raw respiratory signals revealed striking differences in signal's shape and frequency in the different behaviors (Figure 4A). Distribution of individual cycle frequency for each behavior is represented in Figure 4B. Statistical analysis showed significant differences between all the distributions (two-sample Kolmogorov–Smirnov comparisons, p < 0.05), with the mean frequency value (insert in Figure 4B) gradually decreasing from odor (9.1 ± 0.1 Hz) to exploration (7.6 ± 0.1 Hz), freezing (3.4 ± 0.2 Hz) and sleep (2.0 ± 0.4 Hz). Pair-wise comparisons revealed that each mean frequency was significantly different from the other three (p < 0.001).


The RUB Cage: Respiration-Ultrasonic Vocalizations-Behavior Acquisition Setup for Assessing Emotional Memory in Rats.

Hegoburu C, Shionoya K, Garcia S, Messaoudi B, Thévenet M, Mouly AM - Front Behav Neurosci (2011)

Evolution of respiratory frequency with behavior. (A) Individual examples of respiratory traces observed during four stable behavioral states: odor sampling, exploration, freezing, and sleep. (B) Distribution of respiratory frequencies (probability distribution function: PDF) in the different behavioral states. The distributions were obtained with a 0.25 Hz bin. Insert: mean ± SEM frequency for each behavior. *Significant differences between all the mean values 2 by 2 (p < 0.001). (C) Distribution of respiratory frequencies during freezing in two subgroups: animals emitting USV (Fz USV) and animals emitting no USV (Fz no USV). Insert: mean ± SEM frequency for each subgroup. *Significant differences between the two values (p < 0.01). (D) Distribution of respiratory frequencies during call emission (intra-USV) or between calls (inter-USV). Insert: mean ± SEM frequency for each period. *Significant differences between the two values (p = 0.0005).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3101376&req=5

Figure 4: Evolution of respiratory frequency with behavior. (A) Individual examples of respiratory traces observed during four stable behavioral states: odor sampling, exploration, freezing, and sleep. (B) Distribution of respiratory frequencies (probability distribution function: PDF) in the different behavioral states. The distributions were obtained with a 0.25 Hz bin. Insert: mean ± SEM frequency for each behavior. *Significant differences between all the mean values 2 by 2 (p < 0.001). (C) Distribution of respiratory frequencies during freezing in two subgroups: animals emitting USV (Fz USV) and animals emitting no USV (Fz no USV). Insert: mean ± SEM frequency for each subgroup. *Significant differences between the two values (p < 0.01). (D) Distribution of respiratory frequencies during call emission (intra-USV) or between calls (inter-USV). Insert: mean ± SEM frequency for each period. *Significant differences between the two values (p = 0.0005).
Mentions: Visual inspection of raw respiratory signals revealed striking differences in signal's shape and frequency in the different behaviors (Figure 4A). Distribution of individual cycle frequency for each behavior is represented in Figure 4B. Statistical analysis showed significant differences between all the distributions (two-sample Kolmogorov–Smirnov comparisons, p < 0.05), with the mean frequency value (insert in Figure 4B) gradually decreasing from odor (9.1 ± 0.1 Hz) to exploration (7.6 ± 0.1 Hz), freezing (3.4 ± 0.2 Hz) and sleep (2.0 ± 0.4 Hz). Pair-wise comparisons revealed that each mean frequency was significantly different from the other three (p < 0.001).

Bottom Line: In addition, the bottom of the plethysmograph was equipped with a shock-floor allowing foot-shock delivery, and the top received tubing for odor presentations.Using this experimental setup we first described the characteristics of respiration and USV in different behaviors and emotional states.The present setup may be valuable in providing a clearer appraisal of the physiological and behavioral changes that occur during acquisition as well as retrieval of emotional memory.

View Article: PubMed Central - PubMed

Affiliation: Team "Olfaction: From Coding to Memory", Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292 Lyon, France.

ABSTRACT
In animals, emotional memory is classically assessed through pavlovian fear conditioning in which a neutral novel stimulus (conditioned stimulus) is paired with an aversive unconditioned stimulus. After conditioning, the conditioned stimulus elicits a fear response characterized by a wide range of behavioral and physiological responses. Despite the existence of this large repertoire of responses, freezing behavior is often the sole parameter used for quantifying fear response, thus limiting emotional memory appraisal to this unique index. Interestingly, respiratory changes and ultrasonic vocalizations (USV) can occur during fear response, yet very few studies investigated the link between these different parameters and freezing. The aim of the present study was to design an experimental setup allowing the simultaneous recording of respiration, USV, and behavior (RUB cage), and the offline synchronization of the collected data for fine-grain second by second analysis. The setup consisted of a customized plethysmograph for respiration monitoring, equipped with a microphone capturing USV, and with four video cameras for behavior recording. In addition, the bottom of the plethysmograph was equipped with a shock-floor allowing foot-shock delivery, and the top received tubing for odor presentations. Using this experimental setup we first described the characteristics of respiration and USV in different behaviors and emotional states. Then we monitored these parameters during contextual fear conditioning and showed that they bring complementary information about the animal's anxiety state and the strength of aversive memory. The present setup may be valuable in providing a clearer appraisal of the physiological and behavioral changes that occur during acquisition as well as retrieval of emotional memory.

No MeSH data available.


Related in: MedlinePlus