Limits...
Sphingosine 1-phosphate induces differentiation of mesoangioblasts towards smooth muscle. A role for GATA6.

Donati C, Marseglia G, Magi A, Serratì S, Cencetti F, Bernacchioni C, Nannetti G, Benelli M, Brunelli S, Torricelli F, Cossu G, Bruni P - PLoS ONE (2011)

Bottom Line: Quantitative mRNA and protein analysis corroborated the microarray results demonstrating enhanced expression of myogenic marker proteins and regulation of the expression of transcription factor GATA6 and its co-regulator, LMCD1.Finally, the pharmacological inhibition of endogenous S1P formation in response to TGFβ abrogated GATA6 up-regulation, supporting the view that the S1P pathway plays a physiological role in mediating the pro-myogenic effect of TGFβ.This study individuates GATA6 as novel player in the complex transcriptional regulation of mesoangioblast differentiation into SM cells and highlights a role for S1P to favour vascular regeneration.

View Article: PubMed Central - PubMed

Affiliation: Dipartimento di Scienze Biochimiche, Università di Firenze, Firenze, Italia.

ABSTRACT
Different cells can contribute to repair following vascular injury by differentiating into smooth muscle (SM) cells; however the extracellular signals involved are presently poorly characterized. Mesoangioblasts are progenitor cells capable of differentiating into various mesoderm cell types including SM cells. In this study the biological action exerted by the pleiotropic sphingolipid sphingosine 1-phosphate (S1P) in human mesoangioblasts has been initially investigated by cDNA microarray analysis. Obtained data confirmed the anti-apoptotic action of this sphingolipid and identified for the first time a strong differentiating action toward SM cells. Quantitative mRNA and protein analysis corroborated the microarray results demonstrating enhanced expression of myogenic marker proteins and regulation of the expression of transcription factor GATA6 and its co-regulator, LMCD1. Importantly, GATA6 up-regulation induced by S1P was responsible for the enhanced expression of SM-specific contractile proteins. Moreover, by specific gene silencing experiments GATA6 was critical in the pro-differentiating activity of the cytokine TGFβ. Finally, the pharmacological inhibition of endogenous S1P formation in response to TGFβ abrogated GATA6 up-regulation, supporting the view that the S1P pathway plays a physiological role in mediating the pro-myogenic effect of TGFβ. This study individuates GATA6 as novel player in the complex transcriptional regulation of mesoangioblast differentiation into SM cells and highlights a role for S1P to favour vascular regeneration.

Show MeSH

Related in: MedlinePlus

Role of SphK/S1P axis on morphogenesis of mesoangioblasts seeded on Matrigel.20×103 cells were plated in Matrigel in the presence of S1P (A) with or without SKI-2 (B) and photographed (10× magnification) at time 0 and after 24 h from plating.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3101247&req=5

pone-0020389-g006: Role of SphK/S1P axis on morphogenesis of mesoangioblasts seeded on Matrigel.20×103 cells were plated in Matrigel in the presence of S1P (A) with or without SKI-2 (B) and photographed (10× magnification) at time 0 and after 24 h from plating.

Mentions: Finally, we sought to evaluate the effect of S1P on morphological differentiation of mesoangioblasts. To this end, to better explore the phenotypic changes promoted by S1P in human mesoangioblasts, cells seeded in Matrigel and treated with 1 µmol/L S1P were observed at 24 h (Fig. 6A). The addition of the bioactive sphingolipid induced more profound morphological changes compared to unchallenged cells, demonstrating that, in addition to modulate the expression of SM markers, S1P acts as a real differentiating cue in these cells. Since a certain level of differentiation was also appreciable in unchallenged mesoangioblasts at 24 h, we sought to evaluate whether an endogenously produced S1P by activated SphK might be responsible for the observed effect. Indeed, incubation of the 3D matrigel culture of mesoangioblasts in the presence of 10 µmol/L SKI-2, significantly impaired the appearance of the differentiated phenotype (Fig. 6B). Although SphK plays a crucial role in the survival of mesoangioblasts [12], the presence of serum in the growing medium prevented the onset of the apoptotic cell death (data not shown). These findings confirm the crucial role of SphK/S1P axis in the induction of differentiation towards SM of these mesenchymal progenitors.


Sphingosine 1-phosphate induces differentiation of mesoangioblasts towards smooth muscle. A role for GATA6.

Donati C, Marseglia G, Magi A, Serratì S, Cencetti F, Bernacchioni C, Nannetti G, Benelli M, Brunelli S, Torricelli F, Cossu G, Bruni P - PLoS ONE (2011)

Role of SphK/S1P axis on morphogenesis of mesoangioblasts seeded on Matrigel.20×103 cells were plated in Matrigel in the presence of S1P (A) with or without SKI-2 (B) and photographed (10× magnification) at time 0 and after 24 h from plating.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3101247&req=5

pone-0020389-g006: Role of SphK/S1P axis on morphogenesis of mesoangioblasts seeded on Matrigel.20×103 cells were plated in Matrigel in the presence of S1P (A) with or without SKI-2 (B) and photographed (10× magnification) at time 0 and after 24 h from plating.
Mentions: Finally, we sought to evaluate the effect of S1P on morphological differentiation of mesoangioblasts. To this end, to better explore the phenotypic changes promoted by S1P in human mesoangioblasts, cells seeded in Matrigel and treated with 1 µmol/L S1P were observed at 24 h (Fig. 6A). The addition of the bioactive sphingolipid induced more profound morphological changes compared to unchallenged cells, demonstrating that, in addition to modulate the expression of SM markers, S1P acts as a real differentiating cue in these cells. Since a certain level of differentiation was also appreciable in unchallenged mesoangioblasts at 24 h, we sought to evaluate whether an endogenously produced S1P by activated SphK might be responsible for the observed effect. Indeed, incubation of the 3D matrigel culture of mesoangioblasts in the presence of 10 µmol/L SKI-2, significantly impaired the appearance of the differentiated phenotype (Fig. 6B). Although SphK plays a crucial role in the survival of mesoangioblasts [12], the presence of serum in the growing medium prevented the onset of the apoptotic cell death (data not shown). These findings confirm the crucial role of SphK/S1P axis in the induction of differentiation towards SM of these mesenchymal progenitors.

Bottom Line: Quantitative mRNA and protein analysis corroborated the microarray results demonstrating enhanced expression of myogenic marker proteins and regulation of the expression of transcription factor GATA6 and its co-regulator, LMCD1.Finally, the pharmacological inhibition of endogenous S1P formation in response to TGFβ abrogated GATA6 up-regulation, supporting the view that the S1P pathway plays a physiological role in mediating the pro-myogenic effect of TGFβ.This study individuates GATA6 as novel player in the complex transcriptional regulation of mesoangioblast differentiation into SM cells and highlights a role for S1P to favour vascular regeneration.

View Article: PubMed Central - PubMed

Affiliation: Dipartimento di Scienze Biochimiche, Università di Firenze, Firenze, Italia.

ABSTRACT
Different cells can contribute to repair following vascular injury by differentiating into smooth muscle (SM) cells; however the extracellular signals involved are presently poorly characterized. Mesoangioblasts are progenitor cells capable of differentiating into various mesoderm cell types including SM cells. In this study the biological action exerted by the pleiotropic sphingolipid sphingosine 1-phosphate (S1P) in human mesoangioblasts has been initially investigated by cDNA microarray analysis. Obtained data confirmed the anti-apoptotic action of this sphingolipid and identified for the first time a strong differentiating action toward SM cells. Quantitative mRNA and protein analysis corroborated the microarray results demonstrating enhanced expression of myogenic marker proteins and regulation of the expression of transcription factor GATA6 and its co-regulator, LMCD1. Importantly, GATA6 up-regulation induced by S1P was responsible for the enhanced expression of SM-specific contractile proteins. Moreover, by specific gene silencing experiments GATA6 was critical in the pro-differentiating activity of the cytokine TGFβ. Finally, the pharmacological inhibition of endogenous S1P formation in response to TGFβ abrogated GATA6 up-regulation, supporting the view that the S1P pathway plays a physiological role in mediating the pro-myogenic effect of TGFβ. This study individuates GATA6 as novel player in the complex transcriptional regulation of mesoangioblast differentiation into SM cells and highlights a role for S1P to favour vascular regeneration.

Show MeSH
Related in: MedlinePlus