Limits...
The use of a mobile laboratory unit in support of patient management and epidemiological surveillance during the 2005 Marburg Outbreak in Angola.

Grolla A, Jones SM, Fernando L, Strong JE, Ströher U, Möller P, Paweska JT, Burt F, Pablo Palma P, Sprecher A, Formenty P, Roth C, Feldmann H - PLoS Negl Trop Dis (2011)

Bottom Line: Most cases were found among females in the child-bearing age and in children less than five years of age.There was a high concordance in test results between the MLU and the reference laboratory in Luanda operated by the US Centers for Disease Control and Prevention.Field laboratory capacity should be expanded and made an essential part of any future outbreak investigation.

View Article: PubMed Central - PubMed

Affiliation: Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.

ABSTRACT

Background: Marburg virus (MARV), a zoonotic pathogen causing severe hemorrhagic fever in man, has emerged in Angola resulting in the largest outbreak of Marburg hemorrhagic fever (MHF) with the highest case fatality rate to date.

Methodology/principal findings: A mobile laboratory unit (MLU) was deployed as part of the World Health Organization outbreak response. Utilizing quantitative real-time PCR assays, this laboratory provided specific MARV diagnostics in Uige, the epicentre of the outbreak. The MLU operated over a period of 88 days and tested 620 specimens from 388 individuals. Specimens included mainly oral swabs and EDTA blood. Following establishing on site, the MLU operation allowed a diagnostic response in <4 hours from sample receiving. Most cases were found among females in the child-bearing age and in children less than five years of age. The outbreak had a high number of paediatric cases and breastfeeding may have been a factor in MARV transmission as indicated by the epidemiology and MARV positive breast milk specimens. Oral swabs were a useful alternative specimen source to whole blood/serum allowing testing of patients in circumstances of resistance to invasive procedures but limited diagnostic testing to molecular approaches. There was a high concordance in test results between the MLU and the reference laboratory in Luanda operated by the US Centers for Disease Control and Prevention.

Conclusions/significance: The MLU was an important outbreak response asset providing support in patient management and epidemiological surveillance. Field laboratory capacity should be expanded and made an essential part of any future outbreak investigation.

Show MeSH

Related in: MedlinePlus

Laboratory set up and procedures.Laboratory space was made available to us in the Paediatric Ward of the Uige Provincial Hospital. Four rooms were used for the laboratory set up to ensure isolation of infectious work from other activities and to separate PCR assay steps to minimize contamination. (A) Room for RT-PCR master mix preparation; (B) room for sample inactivation; (C) room for RNA extraction and real-time RT-PCR; (D) room for PPE donning and disinfection.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3101190&req=5

pntd-0001183-g001: Laboratory set up and procedures.Laboratory space was made available to us in the Paediatric Ward of the Uige Provincial Hospital. Four rooms were used for the laboratory set up to ensure isolation of infectious work from other activities and to separate PCR assay steps to minimize contamination. (A) Room for RT-PCR master mix preparation; (B) room for sample inactivation; (C) room for RNA extraction and real-time RT-PCR; (D) room for PPE donning and disinfection.

Mentions: Laboratory space was made available for the MLU in the Paediatric Ward of the Uige Provincial Hospital (Figure 1). Four rooms were used for the laboratory set up to ensure isolation of infectious work from other activities and to separate PCR assay steps to minimize contamination. Two rooms were located on one side of a central hallway; the smaller of the two rooms was accessible by a single door and had no windows or other opening and was utilized for infectious work (‘hot room’). The anteroom to this room was used for the preparation for entry to the infectious room and the subsequent disinfection of the worker following infectious work. Opposite these rooms were two additional rooms; one was used for RNA extraction and running the Q-RT-PCR and the other room was utilized as a ‘clean room’ for master mix preparation. Reagents and the laboratory team (2–3 members) were replaced every three weeks; in total NML deployed six teams to Angola to cover the period of April 1 to June 27, 2005.


The use of a mobile laboratory unit in support of patient management and epidemiological surveillance during the 2005 Marburg Outbreak in Angola.

Grolla A, Jones SM, Fernando L, Strong JE, Ströher U, Möller P, Paweska JT, Burt F, Pablo Palma P, Sprecher A, Formenty P, Roth C, Feldmann H - PLoS Negl Trop Dis (2011)

Laboratory set up and procedures.Laboratory space was made available to us in the Paediatric Ward of the Uige Provincial Hospital. Four rooms were used for the laboratory set up to ensure isolation of infectious work from other activities and to separate PCR assay steps to minimize contamination. (A) Room for RT-PCR master mix preparation; (B) room for sample inactivation; (C) room for RNA extraction and real-time RT-PCR; (D) room for PPE donning and disinfection.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3101190&req=5

pntd-0001183-g001: Laboratory set up and procedures.Laboratory space was made available to us in the Paediatric Ward of the Uige Provincial Hospital. Four rooms were used for the laboratory set up to ensure isolation of infectious work from other activities and to separate PCR assay steps to minimize contamination. (A) Room for RT-PCR master mix preparation; (B) room for sample inactivation; (C) room for RNA extraction and real-time RT-PCR; (D) room for PPE donning and disinfection.
Mentions: Laboratory space was made available for the MLU in the Paediatric Ward of the Uige Provincial Hospital (Figure 1). Four rooms were used for the laboratory set up to ensure isolation of infectious work from other activities and to separate PCR assay steps to minimize contamination. Two rooms were located on one side of a central hallway; the smaller of the two rooms was accessible by a single door and had no windows or other opening and was utilized for infectious work (‘hot room’). The anteroom to this room was used for the preparation for entry to the infectious room and the subsequent disinfection of the worker following infectious work. Opposite these rooms were two additional rooms; one was used for RNA extraction and running the Q-RT-PCR and the other room was utilized as a ‘clean room’ for master mix preparation. Reagents and the laboratory team (2–3 members) were replaced every three weeks; in total NML deployed six teams to Angola to cover the period of April 1 to June 27, 2005.

Bottom Line: Most cases were found among females in the child-bearing age and in children less than five years of age.There was a high concordance in test results between the MLU and the reference laboratory in Luanda operated by the US Centers for Disease Control and Prevention.Field laboratory capacity should be expanded and made an essential part of any future outbreak investigation.

View Article: PubMed Central - PubMed

Affiliation: Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.

ABSTRACT

Background: Marburg virus (MARV), a zoonotic pathogen causing severe hemorrhagic fever in man, has emerged in Angola resulting in the largest outbreak of Marburg hemorrhagic fever (MHF) with the highest case fatality rate to date.

Methodology/principal findings: A mobile laboratory unit (MLU) was deployed as part of the World Health Organization outbreak response. Utilizing quantitative real-time PCR assays, this laboratory provided specific MARV diagnostics in Uige, the epicentre of the outbreak. The MLU operated over a period of 88 days and tested 620 specimens from 388 individuals. Specimens included mainly oral swabs and EDTA blood. Following establishing on site, the MLU operation allowed a diagnostic response in <4 hours from sample receiving. Most cases were found among females in the child-bearing age and in children less than five years of age. The outbreak had a high number of paediatric cases and breastfeeding may have been a factor in MARV transmission as indicated by the epidemiology and MARV positive breast milk specimens. Oral swabs were a useful alternative specimen source to whole blood/serum allowing testing of patients in circumstances of resistance to invasive procedures but limited diagnostic testing to molecular approaches. There was a high concordance in test results between the MLU and the reference laboratory in Luanda operated by the US Centers for Disease Control and Prevention.

Conclusions/significance: The MLU was an important outbreak response asset providing support in patient management and epidemiological surveillance. Field laboratory capacity should be expanded and made an essential part of any future outbreak investigation.

Show MeSH
Related in: MedlinePlus