Limits...
An adsorptive transfer technique coupled with brdicka reaction to reveal the importance of metallothionein in chemotherapy with platinum based cytostatics.

Krizkova S, Fabrik I, Huska D, Adam V, Babula P, Hrabeta J, Eckschlager T, Pochop P, Darsova D, Kukacka J, Prusa R, Trnkova L, Kizek R - Int J Mol Sci (2010)

Bottom Line: The drugs based on platinum metals represent one of the oldest, but also one of the most effective groups of chemotherapeutic agents.This study aimed at investigating the interactions of MT with cisplatin or carboplatin, using the adsorptive transfer technique coupled with differential pulse voltammetry Brdicka reaction (AdTS DPV Brdicka reaction), and a comparison of in vitro results with results obtained in vivo.The results obtained from the in vitro study show a strong affinity between platinum based drugs and MT.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.

ABSTRACT
The drugs based on platinum metals represent one of the oldest, but also one of the most effective groups of chemotherapeutic agents. Thanks to many clinical studies it is known that resistance of tumor cells to drugs is a frequent cause of chemotherapy failure. With regard to platinum based drugs, multidrug resistance can also be connected with increased expression of low-molecular weight protein metallothionein (MT). This study aimed at investigating the interactions of MT with cisplatin or carboplatin, using the adsorptive transfer technique coupled with differential pulse voltammetry Brdicka reaction (AdTS DPV Brdicka reaction), and a comparison of in vitro results with results obtained in vivo. The results obtained from the in vitro study show a strong affinity between platinum based drugs and MT. Further, we analyzed extracts of neuroblastoma cell lines treated with cisplatin or carboplatin. It is clear that neuroblastoma UKF-NB-4 cisplatin-resistant and cisplatin-sensitive cell lines unlikely respond to the presence of the platinum-based cytostatics cisplatin and carboplatin. Finally, we determined the level of MT in samples from rabbits treated with carboplatin and patients with retinoblastoma treated with the same drug.

Show MeSH

Related in: MedlinePlus

Simplified scheme of the interactions of MT with platinum-based cytostatics. (a) Application of platinum based cytostatic agents into organisms; (b) transport into the cell nucleus, (c) binding of platinum based cytostatic agents to metal transcription inhibitor (MTI) and release from complex with metal transcription factor-1 (MTF-1) followed by MTF-1 binding to metal responsive element (MRE). This step initiates mRNA MT synthesis. mRNA is consequently translated and active MT bind molecules of platinum-based cytostatics.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3100849&req=5

f1-ijms-11-04826: Simplified scheme of the interactions of MT with platinum-based cytostatics. (a) Application of platinum based cytostatic agents into organisms; (b) transport into the cell nucleus, (c) binding of platinum based cytostatic agents to metal transcription inhibitor (MTI) and release from complex with metal transcription factor-1 (MTF-1) followed by MTF-1 binding to metal responsive element (MRE). This step initiates mRNA MT synthesis. mRNA is consequently translated and active MT bind molecules of platinum-based cytostatics.

Mentions: Metallothionein (MT) belongs to the group of intracellular, cysteine-rich proteins (Cys content up to 30% of the molecule) with a molecular weight of 6–10 kDa. The MT molecule consists of two binding domains composed of two cysteine clusters. The N-terminal part of the protein (β-domain) has three binding sites for divalent ions and the C-terminal protein part (α-domain) is able to bind four divalent metal ions. One MT molecule is able to bind 12 univalent and/or seven divalent metal ions. However, it is known that single MT molecules differ in their metal ions content and, thus, heavy metal binding sites in the MT molecule are not saturated under physiological conditions [37,38]. This is important for MT biological function (heavy metals homeostasis and detoxification, immunomodulation and regulation functions) [35,36,39,40]. One of the most important MT feature is its ability to interact with metal-containing therapeutics, such as platinum-based cytostatics. This ability can result in a decrease of the free cytostatic agent therapeutic level and thereby increase the resistance of tumor cells against cytostatic agent therapeutic concentrations. A review in Current Protein and Peptide Science aimed at clarifying the relationship between MT and tumor diseases was recently published [35]. Figure 1 shows a simplified scheme of interaction between MT and platinum-based cytostatics. Platinum-based therapeutic agents are probably able to bind to metal transcription inhibitor (MTI) that consequently releases the metal transcription factor-1 (MTF-1). Herewith, the MT biosynthesis is initiated and biosynthesized MT can interact with platinum-based cytostatic agent molecules. Thanks to inactivation of executive free therapeutic molecules by MT, the cytostatic agent therapeutic concentrations decreases and this leads to the growth of new cell subpopulations resistant to tumor therapy. The mechanisms of this process are still not clear [11,30,31,35,41–53]. This present study is aimed at studying interactions of metallothionein and cisplatin or carboplatin using the adsorptive transfer technique coupled with differential pulse voltammetry Brdicka reaction (AdTS DPV Brdicka reaction). We also aim to compare in vitro results with results obtained in vivo. Particularly, attention is paid to analysis of in vitro experiments, neuroblastoma cell line extracts, blood from rabbits treated with carboplatin, and patients with retinoblastoma treated with the same drug.


An adsorptive transfer technique coupled with brdicka reaction to reveal the importance of metallothionein in chemotherapy with platinum based cytostatics.

Krizkova S, Fabrik I, Huska D, Adam V, Babula P, Hrabeta J, Eckschlager T, Pochop P, Darsova D, Kukacka J, Prusa R, Trnkova L, Kizek R - Int J Mol Sci (2010)

Simplified scheme of the interactions of MT with platinum-based cytostatics. (a) Application of platinum based cytostatic agents into organisms; (b) transport into the cell nucleus, (c) binding of platinum based cytostatic agents to metal transcription inhibitor (MTI) and release from complex with metal transcription factor-1 (MTF-1) followed by MTF-1 binding to metal responsive element (MRE). This step initiates mRNA MT synthesis. mRNA is consequently translated and active MT bind molecules of platinum-based cytostatics.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3100849&req=5

f1-ijms-11-04826: Simplified scheme of the interactions of MT with platinum-based cytostatics. (a) Application of platinum based cytostatic agents into organisms; (b) transport into the cell nucleus, (c) binding of platinum based cytostatic agents to metal transcription inhibitor (MTI) and release from complex with metal transcription factor-1 (MTF-1) followed by MTF-1 binding to metal responsive element (MRE). This step initiates mRNA MT synthesis. mRNA is consequently translated and active MT bind molecules of platinum-based cytostatics.
Mentions: Metallothionein (MT) belongs to the group of intracellular, cysteine-rich proteins (Cys content up to 30% of the molecule) with a molecular weight of 6–10 kDa. The MT molecule consists of two binding domains composed of two cysteine clusters. The N-terminal part of the protein (β-domain) has three binding sites for divalent ions and the C-terminal protein part (α-domain) is able to bind four divalent metal ions. One MT molecule is able to bind 12 univalent and/or seven divalent metal ions. However, it is known that single MT molecules differ in their metal ions content and, thus, heavy metal binding sites in the MT molecule are not saturated under physiological conditions [37,38]. This is important for MT biological function (heavy metals homeostasis and detoxification, immunomodulation and regulation functions) [35,36,39,40]. One of the most important MT feature is its ability to interact with metal-containing therapeutics, such as platinum-based cytostatics. This ability can result in a decrease of the free cytostatic agent therapeutic level and thereby increase the resistance of tumor cells against cytostatic agent therapeutic concentrations. A review in Current Protein and Peptide Science aimed at clarifying the relationship between MT and tumor diseases was recently published [35]. Figure 1 shows a simplified scheme of interaction between MT and platinum-based cytostatics. Platinum-based therapeutic agents are probably able to bind to metal transcription inhibitor (MTI) that consequently releases the metal transcription factor-1 (MTF-1). Herewith, the MT biosynthesis is initiated and biosynthesized MT can interact with platinum-based cytostatic agent molecules. Thanks to inactivation of executive free therapeutic molecules by MT, the cytostatic agent therapeutic concentrations decreases and this leads to the growth of new cell subpopulations resistant to tumor therapy. The mechanisms of this process are still not clear [11,30,31,35,41–53]. This present study is aimed at studying interactions of metallothionein and cisplatin or carboplatin using the adsorptive transfer technique coupled with differential pulse voltammetry Brdicka reaction (AdTS DPV Brdicka reaction). We also aim to compare in vitro results with results obtained in vivo. Particularly, attention is paid to analysis of in vitro experiments, neuroblastoma cell line extracts, blood from rabbits treated with carboplatin, and patients with retinoblastoma treated with the same drug.

Bottom Line: The drugs based on platinum metals represent one of the oldest, but also one of the most effective groups of chemotherapeutic agents.This study aimed at investigating the interactions of MT with cisplatin or carboplatin, using the adsorptive transfer technique coupled with differential pulse voltammetry Brdicka reaction (AdTS DPV Brdicka reaction), and a comparison of in vitro results with results obtained in vivo.The results obtained from the in vitro study show a strong affinity between platinum based drugs and MT.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.

ABSTRACT
The drugs based on platinum metals represent one of the oldest, but also one of the most effective groups of chemotherapeutic agents. Thanks to many clinical studies it is known that resistance of tumor cells to drugs is a frequent cause of chemotherapy failure. With regard to platinum based drugs, multidrug resistance can also be connected with increased expression of low-molecular weight protein metallothionein (MT). This study aimed at investigating the interactions of MT with cisplatin or carboplatin, using the adsorptive transfer technique coupled with differential pulse voltammetry Brdicka reaction (AdTS DPV Brdicka reaction), and a comparison of in vitro results with results obtained in vivo. The results obtained from the in vitro study show a strong affinity between platinum based drugs and MT. Further, we analyzed extracts of neuroblastoma cell lines treated with cisplatin or carboplatin. It is clear that neuroblastoma UKF-NB-4 cisplatin-resistant and cisplatin-sensitive cell lines unlikely respond to the presence of the platinum-based cytostatics cisplatin and carboplatin. Finally, we determined the level of MT in samples from rabbits treated with carboplatin and patients with retinoblastoma treated with the same drug.

Show MeSH
Related in: MedlinePlus