Limits...
Attention-induced deactivations in very low frequency EEG oscillations: differential localisation according to ADHD symptom status.

Broyd SJ, Helps SK, Sonuga-Barke EJ - PLoS ONE (2011)

Bottom Line: There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample.Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions.Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN.

View Article: PubMed Central - PubMed

Affiliation: Developmental Brain-Behaviour Laboratory, School of Psychology, Institute for Disorders of Impulse and Attention, University of Southampton, Southampton, United Kingdom.

ABSTRACT

Background: The default-mode network (DMN) is characterised by coherent very low frequency (VLF) brain oscillations. The cognitive significance of this VLF profile remains unclear, partly because of the temporally constrained nature of the blood oxygen-level dependent (BOLD) signal. Previously we have identified a VLF EEG network of scalp locations that shares many features of the DMN. Here we explore the intracranial sources of VLF EEG and examine their overlap with the DMN in adults with high and low ADHD ratings.

Methodology/principal findings: DC-EEG was recorded using an equidistant 66 channel electrode montage in 25 adult participants with high- and 25 participants with low-ratings of ADHD symptoms during a rest condition and an attention demanding Eriksen task. VLF EEG power was calculated in the VLF band (0.02 to 0.2 Hz) for the rest and task condition and compared for high and low ADHD participants. sLORETA was used to identify brain sources associated with the attention-induced deactivation of VLF EEG power, and to examine these sources in relation to ADHD symptoms. There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample. Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions. However, deactivation sources were different for high and low ADHD groups: In the low ADHD group attention-induced VLF EEG deactivation was most significant in medial prefrontal regions while for the high ADHD group this deactivation was predominantly localised to the temporal lobes.

Conclusions/significance: Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN. Furthermore, these seem to be related to ADHD symptom status, with high ADHD adults failing to significantly deactivate medial prefrontal regions while at the same time showing significant attenuation of VLF EEG power in temporal lobes.

Show MeSH

Related in: MedlinePlus

Attention-induced deactivation of very low frequency (0.02–0.2 Hz) EEG in low and high ADHD groups.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3050980&req=5

pone-0017325-g002: Attention-induced deactivation of very low frequency (0.02–0.2 Hz) EEG in low and high ADHD groups.

Mentions: There was significant attention-induced deactivation of VLF EEG in terms of attenuation between rest and task (F (1,38) = 14.13, p = .001). There was no significant effect of Group or Group × Condition interaction (all ps >0.1; see Figure 2). Figure 1 (b) shows the scalp distributions of the attention-induced deactivation of VLF EEG power in the whole sample. Consistent with the resting state scalp distribution, deactivation of VLF EEG power extended from frontocentral to centroparietal areas, and additionally over bilateral temporal regions. As predicted, s-LORETA identified significant deactivations for the whole sample in medial prefrontal regions including precentral (BA 43), medial (BA 6) and middle frontal gyrus (BA 8), PCC/precuneus (BA 23 and 31) and postcentral gyrus (BA 43). Deactivations were also seen in temporal regions including the superior (BA 22) and middle temporal gyrus (BA 21), transverse temporal gyrus (BA 41 and 42) as well as cingulate gyrus (BA 23, 24 and 32) and parahippocampal gyrus (BA 30; log F = 0.688, extreme p = .003). Figure 3 shows the intracranial sources associated with these VLF-EEG deactivations identified using sLORETA for each group. The patterns were markedly different for the low ADHD and high ADHD participants. Deactivations in medial prefrontal regions including the medial frontal gyrus (BA 6 and 32), superior frontal gyrus (BA 8) and cingulate gyrus were found to be significant in the low ADHD but not the high ADHD group (BA 24; log F ratio (1,19)  = 0.973, extreme p = .036; see Figure 3(a)). For the high ADHD group significant deactivations were found in temporal lobes including the superior (BA 22) and middle temporal gyrus (BA 21) and fusiform gyrus (BA 37; log F ratio (1,19)  = 0.886, extreme p = .002; Figure 3(b)).


Attention-induced deactivations in very low frequency EEG oscillations: differential localisation according to ADHD symptom status.

Broyd SJ, Helps SK, Sonuga-Barke EJ - PLoS ONE (2011)

Attention-induced deactivation of very low frequency (0.02–0.2 Hz) EEG in low and high ADHD groups.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3050980&req=5

pone-0017325-g002: Attention-induced deactivation of very low frequency (0.02–0.2 Hz) EEG in low and high ADHD groups.
Mentions: There was significant attention-induced deactivation of VLF EEG in terms of attenuation between rest and task (F (1,38) = 14.13, p = .001). There was no significant effect of Group or Group × Condition interaction (all ps >0.1; see Figure 2). Figure 1 (b) shows the scalp distributions of the attention-induced deactivation of VLF EEG power in the whole sample. Consistent with the resting state scalp distribution, deactivation of VLF EEG power extended from frontocentral to centroparietal areas, and additionally over bilateral temporal regions. As predicted, s-LORETA identified significant deactivations for the whole sample in medial prefrontal regions including precentral (BA 43), medial (BA 6) and middle frontal gyrus (BA 8), PCC/precuneus (BA 23 and 31) and postcentral gyrus (BA 43). Deactivations were also seen in temporal regions including the superior (BA 22) and middle temporal gyrus (BA 21), transverse temporal gyrus (BA 41 and 42) as well as cingulate gyrus (BA 23, 24 and 32) and parahippocampal gyrus (BA 30; log F = 0.688, extreme p = .003). Figure 3 shows the intracranial sources associated with these VLF-EEG deactivations identified using sLORETA for each group. The patterns were markedly different for the low ADHD and high ADHD participants. Deactivations in medial prefrontal regions including the medial frontal gyrus (BA 6 and 32), superior frontal gyrus (BA 8) and cingulate gyrus were found to be significant in the low ADHD but not the high ADHD group (BA 24; log F ratio (1,19)  = 0.973, extreme p = .036; see Figure 3(a)). For the high ADHD group significant deactivations were found in temporal lobes including the superior (BA 22) and middle temporal gyrus (BA 21) and fusiform gyrus (BA 37; log F ratio (1,19)  = 0.886, extreme p = .002; Figure 3(b)).

Bottom Line: There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample.Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions.Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN.

View Article: PubMed Central - PubMed

Affiliation: Developmental Brain-Behaviour Laboratory, School of Psychology, Institute for Disorders of Impulse and Attention, University of Southampton, Southampton, United Kingdom.

ABSTRACT

Background: The default-mode network (DMN) is characterised by coherent very low frequency (VLF) brain oscillations. The cognitive significance of this VLF profile remains unclear, partly because of the temporally constrained nature of the blood oxygen-level dependent (BOLD) signal. Previously we have identified a VLF EEG network of scalp locations that shares many features of the DMN. Here we explore the intracranial sources of VLF EEG and examine their overlap with the DMN in adults with high and low ADHD ratings.

Methodology/principal findings: DC-EEG was recorded using an equidistant 66 channel electrode montage in 25 adult participants with high- and 25 participants with low-ratings of ADHD symptoms during a rest condition and an attention demanding Eriksen task. VLF EEG power was calculated in the VLF band (0.02 to 0.2 Hz) for the rest and task condition and compared for high and low ADHD participants. sLORETA was used to identify brain sources associated with the attention-induced deactivation of VLF EEG power, and to examine these sources in relation to ADHD symptoms. There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample. Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions. However, deactivation sources were different for high and low ADHD groups: In the low ADHD group attention-induced VLF EEG deactivation was most significant in medial prefrontal regions while for the high ADHD group this deactivation was predominantly localised to the temporal lobes.

Conclusions/significance: Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN. Furthermore, these seem to be related to ADHD symptom status, with high ADHD adults failing to significantly deactivate medial prefrontal regions while at the same time showing significant attenuation of VLF EEG power in temporal lobes.

Show MeSH
Related in: MedlinePlus