Limits...
Attention-induced deactivations in very low frequency EEG oscillations: differential localisation according to ADHD symptom status.

Broyd SJ, Helps SK, Sonuga-Barke EJ - PLoS ONE (2011)

Bottom Line: There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample.Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions.Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN.

View Article: PubMed Central - PubMed

Affiliation: Developmental Brain-Behaviour Laboratory, School of Psychology, Institute for Disorders of Impulse and Attention, University of Southampton, Southampton, United Kingdom.

ABSTRACT

Background: The default-mode network (DMN) is characterised by coherent very low frequency (VLF) brain oscillations. The cognitive significance of this VLF profile remains unclear, partly because of the temporally constrained nature of the blood oxygen-level dependent (BOLD) signal. Previously we have identified a VLF EEG network of scalp locations that shares many features of the DMN. Here we explore the intracranial sources of VLF EEG and examine their overlap with the DMN in adults with high and low ADHD ratings.

Methodology/principal findings: DC-EEG was recorded using an equidistant 66 channel electrode montage in 25 adult participants with high- and 25 participants with low-ratings of ADHD symptoms during a rest condition and an attention demanding Eriksen task. VLF EEG power was calculated in the VLF band (0.02 to 0.2 Hz) for the rest and task condition and compared for high and low ADHD participants. sLORETA was used to identify brain sources associated with the attention-induced deactivation of VLF EEG power, and to examine these sources in relation to ADHD symptoms. There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample. Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions. However, deactivation sources were different for high and low ADHD groups: In the low ADHD group attention-induced VLF EEG deactivation was most significant in medial prefrontal regions while for the high ADHD group this deactivation was predominantly localised to the temporal lobes.

Conclusions/significance: Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN. Furthermore, these seem to be related to ADHD symptom status, with high ADHD adults failing to significantly deactivate medial prefrontal regions while at the same time showing significant attenuation of VLF EEG power in temporal lobes.

Show MeSH

Related in: MedlinePlus

VLF frequency EEG scalp distribution.Spatial distribution of (a) VLF power (0.02–0.2 Hz) at rest and (b) attention-induced deactivation of VLF power for the whole sample. For reference, the electrode montage is shown on the left and topographic maps on right.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3050980&req=5

pone-0017325-g001: VLF frequency EEG scalp distribution.Spatial distribution of (a) VLF power (0.02–0.2 Hz) at rest and (b) attention-induced deactivation of VLF power for the whole sample. For reference, the electrode montage is shown on the left and topographic maps on right.

Mentions: Figure 1 (a) shows the spatial distribution of maximal VLF EEG power band at rest in the whole sample. Inspection of this VLF power distribution in the whole sample revealed maximal power in medial frontal regions extending into centroparietal areas. There was no difference between the low and high ADHD group in terms of VLF power at rest or intracerebral sources (p>0.100).


Attention-induced deactivations in very low frequency EEG oscillations: differential localisation according to ADHD symptom status.

Broyd SJ, Helps SK, Sonuga-Barke EJ - PLoS ONE (2011)

VLF frequency EEG scalp distribution.Spatial distribution of (a) VLF power (0.02–0.2 Hz) at rest and (b) attention-induced deactivation of VLF power for the whole sample. For reference, the electrode montage is shown on the left and topographic maps on right.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3050980&req=5

pone-0017325-g001: VLF frequency EEG scalp distribution.Spatial distribution of (a) VLF power (0.02–0.2 Hz) at rest and (b) attention-induced deactivation of VLF power for the whole sample. For reference, the electrode montage is shown on the left and topographic maps on right.
Mentions: Figure 1 (a) shows the spatial distribution of maximal VLF EEG power band at rest in the whole sample. Inspection of this VLF power distribution in the whole sample revealed maximal power in medial frontal regions extending into centroparietal areas. There was no difference between the low and high ADHD group in terms of VLF power at rest or intracerebral sources (p>0.100).

Bottom Line: There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample.Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions.Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN.

View Article: PubMed Central - PubMed

Affiliation: Developmental Brain-Behaviour Laboratory, School of Psychology, Institute for Disorders of Impulse and Attention, University of Southampton, Southampton, United Kingdom.

ABSTRACT

Background: The default-mode network (DMN) is characterised by coherent very low frequency (VLF) brain oscillations. The cognitive significance of this VLF profile remains unclear, partly because of the temporally constrained nature of the blood oxygen-level dependent (BOLD) signal. Previously we have identified a VLF EEG network of scalp locations that shares many features of the DMN. Here we explore the intracranial sources of VLF EEG and examine their overlap with the DMN in adults with high and low ADHD ratings.

Methodology/principal findings: DC-EEG was recorded using an equidistant 66 channel electrode montage in 25 adult participants with high- and 25 participants with low-ratings of ADHD symptoms during a rest condition and an attention demanding Eriksen task. VLF EEG power was calculated in the VLF band (0.02 to 0.2 Hz) for the rest and task condition and compared for high and low ADHD participants. sLORETA was used to identify brain sources associated with the attention-induced deactivation of VLF EEG power, and to examine these sources in relation to ADHD symptoms. There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample. Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions. However, deactivation sources were different for high and low ADHD groups: In the low ADHD group attention-induced VLF EEG deactivation was most significant in medial prefrontal regions while for the high ADHD group this deactivation was predominantly localised to the temporal lobes.

Conclusions/significance: Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN. Furthermore, these seem to be related to ADHD symptom status, with high ADHD adults failing to significantly deactivate medial prefrontal regions while at the same time showing significant attenuation of VLF EEG power in temporal lobes.

Show MeSH
Related in: MedlinePlus