Limits...
Spatio-temporal analysis of mortality among children under the age of five in Manhiça (Mozambique) during the period 1997-2005.

Escaramís G, Carrasco JL, Aponte JJ, Nhalungo D, Nhacolo A, Alonso P, Ascaso C - Int J Health Geogr (2011)

Bottom Line: The results showed that childhood mortality in all the area was modified from year to year describing a convex time-trend but the spatial pattern described by the neighbourhood-specific underlying mortality rates did not change during the entire period from 1997 to 2005, where neighbourhoods with highest risks are situated in the peripheral side of the district.The results of this study suggest that the health intervention programmes established in Manhiça to alleviate the effects of flooding on child mortality should cover a period of around five years and that special attention might be focused on eradicating malaria transmission.These outcomes also suggest the utility of suitably modelling space-time trend variations in a region when a point effect of an environmental factor affects all the study area.

View Article: PubMed Central - HTML - PubMed

Affiliation: Bioestadística, Departament de Salut Pública, Universitat de Barcelona, Barcelona, Spain.

ABSTRACT

Background: Reducing childhood mortality is the fourth goal of the Millennium Development Goals agreed at the United Nations Millennium Summit in September 2000. However, childhood mortality in developing countries remains high. Providing an accurate picture of space and time-trend variations in child mortality in a region might generate further ideas for health planning actions to achieve such a reduction. The purpose of this study was to examine the spatio-temporal variation for child mortality rates in Manhiça, a district within the Maputo province of southern rural Mozambique during the period 1997-2005 using a proper generalized linear mixed model.

Results: The results showed that childhood mortality in all the area was modified from year to year describing a convex time-trend but the spatial pattern described by the neighbourhood-specific underlying mortality rates did not change during the entire period from 1997 to 2005, where neighbourhoods with highest risks are situated in the peripheral side of the district. The spatial distribution, though more blurred here, was similar to the spatial distribution of child malaria incidence in the same area. The peak in mortality rates observed in 2001 could have been caused by the precipitation system that started in early February 2000, following which heavy rains flooded parts of Mozambique's southern provinces. However, the mortality rates at the end of the period returned to initial values.

Conclusions: The results of this study suggest that the health intervention programmes established in Manhiça to alleviate the effects of flooding on child mortality should cover a period of around five years and that special attention might be focused on eradicating malaria transmission. These outcomes also suggest the utility of suitably modelling space-time trend variations in a region when a point effect of an environmental factor affects all the study area.

Show MeSH

Related in: MedlinePlus

Annual rainfall (mm) in Manhiça district during the period 1997-2005
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3050678&req=5

Figure 4: Annual rainfall (mm) in Manhiça district during the period 1997-2005

Mentions: The model also shows that all southern Manhiça has undergone a convex evolution in child mortality rates during the period 1997-2005, with a maximum being reached in 2001. This convexity pattern could have been caused by the precipitation system that started in early February 2000, and which saw heavy rain flood parts of Mozambique's southern provinces. In as little as three weeks the main river systems in Mozambique, from the Incomati River in the south to the Zambézia River in the centre-north, exceeded their normal yearly flood rates by several fold. As a result, the surrounding villages were flooded, causing the worst damage in fifty years. Manhiça is crossed by the Incomati River from north to south and was one of the areas severely affected by the precipitation system. As can be seen in Figure 4 the annual rainfall in 2000 was markedly higher than the other annual rainfalls for the period analysed, reaching values above 3000 mm, whereas in other years it did not even reach 2000 mm. Rainfall was recorded by the climatology station located near CISM. Given that many of the causes of global child mortality in developing countries, including malaria, diarrhoea, acute respiratory infections and malnutrition, are highly sensitive to climatic conditions such as flooding, this may explain the higher mortality rates in the middle of our study period.


Spatio-temporal analysis of mortality among children under the age of five in Manhiça (Mozambique) during the period 1997-2005.

Escaramís G, Carrasco JL, Aponte JJ, Nhalungo D, Nhacolo A, Alonso P, Ascaso C - Int J Health Geogr (2011)

Annual rainfall (mm) in Manhiça district during the period 1997-2005
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3050678&req=5

Figure 4: Annual rainfall (mm) in Manhiça district during the period 1997-2005
Mentions: The model also shows that all southern Manhiça has undergone a convex evolution in child mortality rates during the period 1997-2005, with a maximum being reached in 2001. This convexity pattern could have been caused by the precipitation system that started in early February 2000, and which saw heavy rain flood parts of Mozambique's southern provinces. In as little as three weeks the main river systems in Mozambique, from the Incomati River in the south to the Zambézia River in the centre-north, exceeded their normal yearly flood rates by several fold. As a result, the surrounding villages were flooded, causing the worst damage in fifty years. Manhiça is crossed by the Incomati River from north to south and was one of the areas severely affected by the precipitation system. As can be seen in Figure 4 the annual rainfall in 2000 was markedly higher than the other annual rainfalls for the period analysed, reaching values above 3000 mm, whereas in other years it did not even reach 2000 mm. Rainfall was recorded by the climatology station located near CISM. Given that many of the causes of global child mortality in developing countries, including malaria, diarrhoea, acute respiratory infections and malnutrition, are highly sensitive to climatic conditions such as flooding, this may explain the higher mortality rates in the middle of our study period.

Bottom Line: The results showed that childhood mortality in all the area was modified from year to year describing a convex time-trend but the spatial pattern described by the neighbourhood-specific underlying mortality rates did not change during the entire period from 1997 to 2005, where neighbourhoods with highest risks are situated in the peripheral side of the district.The results of this study suggest that the health intervention programmes established in Manhiça to alleviate the effects of flooding on child mortality should cover a period of around five years and that special attention might be focused on eradicating malaria transmission.These outcomes also suggest the utility of suitably modelling space-time trend variations in a region when a point effect of an environmental factor affects all the study area.

View Article: PubMed Central - HTML - PubMed

Affiliation: Bioestadística, Departament de Salut Pública, Universitat de Barcelona, Barcelona, Spain.

ABSTRACT

Background: Reducing childhood mortality is the fourth goal of the Millennium Development Goals agreed at the United Nations Millennium Summit in September 2000. However, childhood mortality in developing countries remains high. Providing an accurate picture of space and time-trend variations in child mortality in a region might generate further ideas for health planning actions to achieve such a reduction. The purpose of this study was to examine the spatio-temporal variation for child mortality rates in Manhiça, a district within the Maputo province of southern rural Mozambique during the period 1997-2005 using a proper generalized linear mixed model.

Results: The results showed that childhood mortality in all the area was modified from year to year describing a convex time-trend but the spatial pattern described by the neighbourhood-specific underlying mortality rates did not change during the entire period from 1997 to 2005, where neighbourhoods with highest risks are situated in the peripheral side of the district. The spatial distribution, though more blurred here, was similar to the spatial distribution of child malaria incidence in the same area. The peak in mortality rates observed in 2001 could have been caused by the precipitation system that started in early February 2000, following which heavy rains flooded parts of Mozambique's southern provinces. However, the mortality rates at the end of the period returned to initial values.

Conclusions: The results of this study suggest that the health intervention programmes established in Manhiça to alleviate the effects of flooding on child mortality should cover a period of around five years and that special attention might be focused on eradicating malaria transmission. These outcomes also suggest the utility of suitably modelling space-time trend variations in a region when a point effect of an environmental factor affects all the study area.

Show MeSH
Related in: MedlinePlus