Limits...
CXC receptor-4 mRNA silencing abrogates CXCL12-induced migration of colorectal cancer cells.

Rubie C, Frick VO, Ghadjar P, Wagner M, Justinger C, Faust SK, Vicinus B, Gräber S, Kollmar O, Schilling MK - J Transl Med (2011)

Bottom Line: In CRC tissues CXCL12 was significantly down-regulated and CXCR4 was significantly up-regulated compared to the corresponding normal tissues.This effect was significantly abrogated by neutralizing anti-CXCR4 antibody as well as by CXCR4 siRNAs (P < 0.05).Thus, the expression and functionality of CXCR4 might be associated with the metastatic potential of CRC cells and CXCL12/CXCR4 interactions might therefore constitute a promising target for specific treatment interventions.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of General -, Visceral-, Vascular - and Paediatric Surgery, University of the Saarland, 66421 Homburg/Saar, Germany. claudia.rubie@uks.eu

ABSTRACT

Background: Interactions between CXCR4 and its ligand CXCL12 have been shown to be involved in cancer progression in colorectal cancer (CRC). We performed a comparative CXCL12/CXCR4 expression analysis and assessed the effect of external CXCL12 stimulation on migration of CRC cells without and with CXCR4 inhibition.

Methods: Expression of CXCL12/CXCR4 was assessed by quantitative real-time PCR, ELISA and immunohistochemistry in resection specimens of 50 CRC patients as well as in the corresponding normal tissues and in three human CRC cell lines with different metastatic potential (Caco-2, SW480 and HT-29). Migration assays were performed after stimulation with CXCL12 and CXCR4 was inhibited by siRNA and neutralizing antibodies.

Results: In CRC tissues CXCL12 was significantly down-regulated and CXCR4 was significantly up-regulated compared to the corresponding normal tissues. In cell lines CXCR4 was predominantly expressed in SW480 and less pronounced in HT-29 cells. CXCL12 was only detectable in Caco-2 cells. CXCL12 stimulation had no impact on Caco-2 cells but significantly increased migration of CXCR4 bearing SW480 and HT-29 cells. This effect was significantly abrogated by neutralizing anti-CXCR4 antibody as well as by CXCR4 siRNAs (P < 0.05).

Conclusions: CXCR4 expression was up-regulated in CRC and CXCL12 stimulation increased migration in CXCR4 bearing cell lines. Migration was inhibited by both neutralizing CXCR4 antibodies and CXCR4 siRNAs. Thus, the expression and functionality of CXCR4 might be associated with the metastatic potential of CRC cells and CXCL12/CXCR4 interactions might therefore constitute a promising target for specific treatment interventions.

Show MeSH

Related in: MedlinePlus

Proliferative rate of colorectal cancer cells after CXCR4 mRNA silencing or CXCR4 blockage by inhibition antibodies. Knockdown of endogeneous CXCR4 expression by four different CXCR4 siRNAs or CXCR4 blockage by ant-CXCR4 inhibition antibodies does not decelerate the proliferation rate of (A) Caco-2 cells, (B) HT-29 cells and (C) SW480 cells in relation to untransfected cells without inhibition antibody (control).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3049756&req=5

Figure 7: Proliferative rate of colorectal cancer cells after CXCR4 mRNA silencing or CXCR4 blockage by inhibition antibodies. Knockdown of endogeneous CXCR4 expression by four different CXCR4 siRNAs or CXCR4 blockage by ant-CXCR4 inhibition antibodies does not decelerate the proliferation rate of (A) Caco-2 cells, (B) HT-29 cells and (C) SW480 cells in relation to untransfected cells without inhibition antibody (control).

Mentions: CXCR4 blockage by mRNA silencing or anti-CXCR4 antibodies might restrain the proliferation of CRC cell lines, so that the decreased migration capacity of cancer cells might result from a lower proliferative rate. To ensure that the significantly abrogated migration capacity of HT-29 and SW480 cells after CXCR4 mRNA silencing by all four different CXCR4 siRNAs is not resulting from a lower proliferative rate with respect to the untransfected cells, we investigated their proliferative capacity before and after siRNA transfection. In addition, we also included cell line Caco-2 in this survey. Likewise, we investigated the proliferative capacity of Caco-2, HT-29 and SW480 cells before and after CXCR4 blockage by neutralizing anti-CXCR4 antibody. Here, cells without anti-CXCR4 antibody served as reference. As presented in figure 7 there is no marked difference between the proliferation rates of Caco-2 (Figure 7A), HT-29 (Figure 7B) and SW480 (Figure 7C) cells before or after CXCR4 mRNA silencing or CXCR4 blockage by anti-CXCR4 antibody. Thus, the significantly abrogated migration capacity of HT-29 and SW480 cells after CXCR4 mRNA silencing or CXCR4 blockage by anti-CXCR4 antibody is not resulting from a reduced proliferation rate.


CXC receptor-4 mRNA silencing abrogates CXCL12-induced migration of colorectal cancer cells.

Rubie C, Frick VO, Ghadjar P, Wagner M, Justinger C, Faust SK, Vicinus B, Gräber S, Kollmar O, Schilling MK - J Transl Med (2011)

Proliferative rate of colorectal cancer cells after CXCR4 mRNA silencing or CXCR4 blockage by inhibition antibodies. Knockdown of endogeneous CXCR4 expression by four different CXCR4 siRNAs or CXCR4 blockage by ant-CXCR4 inhibition antibodies does not decelerate the proliferation rate of (A) Caco-2 cells, (B) HT-29 cells and (C) SW480 cells in relation to untransfected cells without inhibition antibody (control).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3049756&req=5

Figure 7: Proliferative rate of colorectal cancer cells after CXCR4 mRNA silencing or CXCR4 blockage by inhibition antibodies. Knockdown of endogeneous CXCR4 expression by four different CXCR4 siRNAs or CXCR4 blockage by ant-CXCR4 inhibition antibodies does not decelerate the proliferation rate of (A) Caco-2 cells, (B) HT-29 cells and (C) SW480 cells in relation to untransfected cells without inhibition antibody (control).
Mentions: CXCR4 blockage by mRNA silencing or anti-CXCR4 antibodies might restrain the proliferation of CRC cell lines, so that the decreased migration capacity of cancer cells might result from a lower proliferative rate. To ensure that the significantly abrogated migration capacity of HT-29 and SW480 cells after CXCR4 mRNA silencing by all four different CXCR4 siRNAs is not resulting from a lower proliferative rate with respect to the untransfected cells, we investigated their proliferative capacity before and after siRNA transfection. In addition, we also included cell line Caco-2 in this survey. Likewise, we investigated the proliferative capacity of Caco-2, HT-29 and SW480 cells before and after CXCR4 blockage by neutralizing anti-CXCR4 antibody. Here, cells without anti-CXCR4 antibody served as reference. As presented in figure 7 there is no marked difference between the proliferation rates of Caco-2 (Figure 7A), HT-29 (Figure 7B) and SW480 (Figure 7C) cells before or after CXCR4 mRNA silencing or CXCR4 blockage by anti-CXCR4 antibody. Thus, the significantly abrogated migration capacity of HT-29 and SW480 cells after CXCR4 mRNA silencing or CXCR4 blockage by anti-CXCR4 antibody is not resulting from a reduced proliferation rate.

Bottom Line: In CRC tissues CXCL12 was significantly down-regulated and CXCR4 was significantly up-regulated compared to the corresponding normal tissues.This effect was significantly abrogated by neutralizing anti-CXCR4 antibody as well as by CXCR4 siRNAs (P < 0.05).Thus, the expression and functionality of CXCR4 might be associated with the metastatic potential of CRC cells and CXCL12/CXCR4 interactions might therefore constitute a promising target for specific treatment interventions.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of General -, Visceral-, Vascular - and Paediatric Surgery, University of the Saarland, 66421 Homburg/Saar, Germany. claudia.rubie@uks.eu

ABSTRACT

Background: Interactions between CXCR4 and its ligand CXCL12 have been shown to be involved in cancer progression in colorectal cancer (CRC). We performed a comparative CXCL12/CXCR4 expression analysis and assessed the effect of external CXCL12 stimulation on migration of CRC cells without and with CXCR4 inhibition.

Methods: Expression of CXCL12/CXCR4 was assessed by quantitative real-time PCR, ELISA and immunohistochemistry in resection specimens of 50 CRC patients as well as in the corresponding normal tissues and in three human CRC cell lines with different metastatic potential (Caco-2, SW480 and HT-29). Migration assays were performed after stimulation with CXCL12 and CXCR4 was inhibited by siRNA and neutralizing antibodies.

Results: In CRC tissues CXCL12 was significantly down-regulated and CXCR4 was significantly up-regulated compared to the corresponding normal tissues. In cell lines CXCR4 was predominantly expressed in SW480 and less pronounced in HT-29 cells. CXCL12 was only detectable in Caco-2 cells. CXCL12 stimulation had no impact on Caco-2 cells but significantly increased migration of CXCR4 bearing SW480 and HT-29 cells. This effect was significantly abrogated by neutralizing anti-CXCR4 antibody as well as by CXCR4 siRNAs (P < 0.05).

Conclusions: CXCR4 expression was up-regulated in CRC and CXCL12 stimulation increased migration in CXCR4 bearing cell lines. Migration was inhibited by both neutralizing CXCR4 antibodies and CXCR4 siRNAs. Thus, the expression and functionality of CXCR4 might be associated with the metastatic potential of CRC cells and CXCL12/CXCR4 interactions might therefore constitute a promising target for specific treatment interventions.

Show MeSH
Related in: MedlinePlus