Limits...
Acoustic noise induces attention shifts and reduces foraging performance in three-spined sticklebacks (Gasterosteus aculeatus).

Purser J, Radford AN - PLoS ONE (2011)

Bottom Line: The addition of noise induced only mild fear-related behaviours--there was an increase in startle responses, but no change in the time spent freezing or hiding compared to a silent control--and thus had no significant impact on the total amount of food eaten.However, there was strong evidence that the addition of noise increased food-handling errors and reduced discrimination between food and non-food items, results that are consistent with a shift in attention.Consequently, noise resulted in decreased foraging efficiency, with more attacks needed to consume the same number of prey items.

View Article: PubMed Central - PubMed

Affiliation: School of Biological Sciences, University of Bristol, Bristol, United Kingdom. julia.purser@bristol.ac.uk

ABSTRACT
Acoustic noise is known to have a variety of detrimental effects on many animals, including humans, but surprisingly little is known about its impacts on foraging behaviour, despite the obvious potential consequences for survival and reproductive success. We therefore exposed captive three-spined sticklebacks (Gasterosteus aculeatus) to brief and prolonged noise to investigate how foraging performance is affected by the addition of acoustic noise to an otherwise quiet environment. The addition of noise induced only mild fear-related behaviours--there was an increase in startle responses, but no change in the time spent freezing or hiding compared to a silent control--and thus had no significant impact on the total amount of food eaten. However, there was strong evidence that the addition of noise increased food-handling errors and reduced discrimination between food and non-food items, results that are consistent with a shift in attention. Consequently, noise resulted in decreased foraging efficiency, with more attacks needed to consume the same number of prey items. Our results suggest that acoustic noise has the potential to influence a whole host of everyday activities through effects on attention, and that even very brief noise exposure can cause functionally significant impacts, emphasising the threat posed by ever-increasing levels of anthropogenic noise in the environment.

Show MeSH

Related in: MedlinePlus

Acoustic noise increases foraging performance errors and reduces foraging efficiency.Response of foraging sticklebacks to playbacks of silence (S), brief (10 s) white noise (BN) and prolonged (300 s) white noise (PN). Bars show mean±1s.e.m. response for 24 fish during each playback of a repeated-measures experiment, with significant (**p≤0.01) and non-significant (ns p≥0.05) posthoc differences indicated (paired t-tests with Bonferroni correction). Brief noise and prolonged noise both significantly affected (A) the proportion of attacks towards non-food items, (B) the proportion of attacked food items that were not consumed, and (C) overall foraging efficiency (consumed items as proportion of all attacks on food and non-food items).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3046255&req=5

pone-0017478-g005: Acoustic noise increases foraging performance errors and reduces foraging efficiency.Response of foraging sticklebacks to playbacks of silence (S), brief (10 s) white noise (BN) and prolonged (300 s) white noise (PN). Bars show mean±1s.e.m. response for 24 fish during each playback of a repeated-measures experiment, with significant (**p≤0.01) and non-significant (ns p≥0.05) posthoc differences indicated (paired t-tests with Bonferroni correction). Brief noise and prolonged noise both significantly affected (A) the proportion of attacks towards non-food items, (B) the proportion of attacked food items that were not consumed, and (C) overall foraging efficiency (consumed items as proportion of all attacks on food and non-food items).

Mentions: Foraging performance errors increased in response to both noise playbacks compared to the silent control. Food versus non-food discrimination was significantly poorer (F2,45 = 11.11, p<0.001; Figure 5a), driven by an increase in attacks on non-food items (F2,46 = 11.69, p<0.001; mean number of attacks ±1s.e.m.: brief noise  =  6.3±0.7, prolonged noise  =  7.1±1.1, silent control  =  2.3±0.4). Food-handling errors were also significantly more frequent (F2,44 = 11.90, p<0.001; Figure 5b), driven primarily by an increase in occasions that attacked food items were not successfully captured (F2,46 = 5.74, p = 0.006; mean number of missed attacks ±1s.e.m.: brief noise  = 1.2±0.4, prolonged noise  = 1.1±0.2, silent control  = 0.1±0.1). Foraging efficiency was consequently significantly lower in both noise treatments compared to the silent control (F2,45 = 26.57, p<0.001); that is, a greater foraging effort was required to consume the same number of prey items in noisy conditions compared to the silent control (Figure 5c).


Acoustic noise induces attention shifts and reduces foraging performance in three-spined sticklebacks (Gasterosteus aculeatus).

Purser J, Radford AN - PLoS ONE (2011)

Acoustic noise increases foraging performance errors and reduces foraging efficiency.Response of foraging sticklebacks to playbacks of silence (S), brief (10 s) white noise (BN) and prolonged (300 s) white noise (PN). Bars show mean±1s.e.m. response for 24 fish during each playback of a repeated-measures experiment, with significant (**p≤0.01) and non-significant (ns p≥0.05) posthoc differences indicated (paired t-tests with Bonferroni correction). Brief noise and prolonged noise both significantly affected (A) the proportion of attacks towards non-food items, (B) the proportion of attacked food items that were not consumed, and (C) overall foraging efficiency (consumed items as proportion of all attacks on food and non-food items).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3046255&req=5

pone-0017478-g005: Acoustic noise increases foraging performance errors and reduces foraging efficiency.Response of foraging sticklebacks to playbacks of silence (S), brief (10 s) white noise (BN) and prolonged (300 s) white noise (PN). Bars show mean±1s.e.m. response for 24 fish during each playback of a repeated-measures experiment, with significant (**p≤0.01) and non-significant (ns p≥0.05) posthoc differences indicated (paired t-tests with Bonferroni correction). Brief noise and prolonged noise both significantly affected (A) the proportion of attacks towards non-food items, (B) the proportion of attacked food items that were not consumed, and (C) overall foraging efficiency (consumed items as proportion of all attacks on food and non-food items).
Mentions: Foraging performance errors increased in response to both noise playbacks compared to the silent control. Food versus non-food discrimination was significantly poorer (F2,45 = 11.11, p<0.001; Figure 5a), driven by an increase in attacks on non-food items (F2,46 = 11.69, p<0.001; mean number of attacks ±1s.e.m.: brief noise  =  6.3±0.7, prolonged noise  =  7.1±1.1, silent control  =  2.3±0.4). Food-handling errors were also significantly more frequent (F2,44 = 11.90, p<0.001; Figure 5b), driven primarily by an increase in occasions that attacked food items were not successfully captured (F2,46 = 5.74, p = 0.006; mean number of missed attacks ±1s.e.m.: brief noise  = 1.2±0.4, prolonged noise  = 1.1±0.2, silent control  = 0.1±0.1). Foraging efficiency was consequently significantly lower in both noise treatments compared to the silent control (F2,45 = 26.57, p<0.001); that is, a greater foraging effort was required to consume the same number of prey items in noisy conditions compared to the silent control (Figure 5c).

Bottom Line: The addition of noise induced only mild fear-related behaviours--there was an increase in startle responses, but no change in the time spent freezing or hiding compared to a silent control--and thus had no significant impact on the total amount of food eaten.However, there was strong evidence that the addition of noise increased food-handling errors and reduced discrimination between food and non-food items, results that are consistent with a shift in attention.Consequently, noise resulted in decreased foraging efficiency, with more attacks needed to consume the same number of prey items.

View Article: PubMed Central - PubMed

Affiliation: School of Biological Sciences, University of Bristol, Bristol, United Kingdom. julia.purser@bristol.ac.uk

ABSTRACT
Acoustic noise is known to have a variety of detrimental effects on many animals, including humans, but surprisingly little is known about its impacts on foraging behaviour, despite the obvious potential consequences for survival and reproductive success. We therefore exposed captive three-spined sticklebacks (Gasterosteus aculeatus) to brief and prolonged noise to investigate how foraging performance is affected by the addition of acoustic noise to an otherwise quiet environment. The addition of noise induced only mild fear-related behaviours--there was an increase in startle responses, but no change in the time spent freezing or hiding compared to a silent control--and thus had no significant impact on the total amount of food eaten. However, there was strong evidence that the addition of noise increased food-handling errors and reduced discrimination between food and non-food items, results that are consistent with a shift in attention. Consequently, noise resulted in decreased foraging efficiency, with more attacks needed to consume the same number of prey items. Our results suggest that acoustic noise has the potential to influence a whole host of everyday activities through effects on attention, and that even very brief noise exposure can cause functionally significant impacts, emphasising the threat posed by ever-increasing levels of anthropogenic noise in the environment.

Show MeSH
Related in: MedlinePlus