Limits...
Aging and error processing: age related increase in the variability of the error-negativity is not accompanied by increase in response variability.

Hoffmann S, Falkenstein M - PLoS ONE (2011)

Bottom Line: In the present study we aimed to investigate whether the Ne reduction usually found in older subjects is due to an altered component structure, i.e., a true alteration in response monitoring in older subjects.The results show a genuine reduction as well as a different component structure of the Ne in older compared to young subjects.Hence, the results indicate that older subjects can compensate the reduction in control reflected in the reduced Ne, at least in simple tasks that induce reaction slips.

View Article: PubMed Central - PubMed

Affiliation: Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany. shoffmann@ifado.de

ABSTRACT

Background: Several studies report an amplitude reduction of the error negativity (Ne or ERN), an event-related potential occurring after erroneous responses, in older participants. In earlier studies it was shown that the Ne can be explained by a single independent component. In the present study we aimed to investigate whether the Ne reduction usually found in older subjects is due to an altered component structure, i.e., a true alteration in response monitoring in older subjects.

Methodology/principal findings: Two age groups conducted two tasks with different stimulus response mappings and task difficulty. Both groups received fully balanced speed or accuracy instructions and an individually adapted deadline in both tasks. Event-related potentials, Independent Component analysis of EEG-data and between trial variability of the Ne were combined with analysis of error rates, coefficients of variation of RT-data and ex-Gaussian fittings to reaction times. The Ne was examined by means of ICA and PCA, yielding a prominent independent component on error trials, the Ne-IC. The Ne-IC was smaller in the older than the younger subjects for both speed and accuracy instructions. Also, the Ne-IC contributed to a much lesser extent to the Ne in older than in younger subjects. RT distribution parameters were not related to Ne/ERP-variability.

Conclusions/significance: The results show a genuine reduction as well as a different component structure of the Ne in older compared to young subjects. This reduction is not reflected in behaviour, apart from a general slowing of older participants. Also, the Ne decline in the elderly is not due to speed accuracy trade-off. Hence, the results indicate that older subjects can compensate the reduction in control reflected in the reduced Ne, at least in simple tasks that induce reaction slips.

Show MeSH

Related in: MedlinePlus

Dipole localizations and contributions of the Ne-IC cluster to the grand average ERP.Upper panel: Dipole localizations of the Ne-IC cluster of the young group [Tal(x,y,z) = 2,10, 19; residual variance = 7.11%] and older subjects [Tal(x,y,z) = −1,10, 26; residual variance  = 7.1%].(young = green, old = blue). Lower panel: Contributions of the Ne-IC clusters of each group in the time-window from 0–150 ms following response. Flanker task: The Ne-IC of young subjects cluster accounted for about 51% of variation in the time window 0–150 ms following erroneous response. The Ne-IC of older participants accounted for about 11% of variation in the Ne time window. Rotation task: Here, Ne-IC cluster of older participants accounted for fewer percent of variation compared to younger subjects, too [39.8%<10.42%].
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3046248&req=5

pone-0017482-g003: Dipole localizations and contributions of the Ne-IC cluster to the grand average ERP.Upper panel: Dipole localizations of the Ne-IC cluster of the young group [Tal(x,y,z) = 2,10, 19; residual variance = 7.11%] and older subjects [Tal(x,y,z) = −1,10, 26; residual variance  = 7.1%].(young = green, old = blue). Lower panel: Contributions of the Ne-IC clusters of each group in the time-window from 0–150 ms following response. Flanker task: The Ne-IC of young subjects cluster accounted for about 51% of variation in the time window 0–150 ms following erroneous response. The Ne-IC of older participants accounted for about 11% of variation in the Ne time window. Rotation task: Here, Ne-IC cluster of older participants accounted for fewer percent of variation compared to younger subjects, too [39.8%<10.42%].

Mentions: In older subjects the Ne-IC cluster explained less percent of variation [11%<51%] in the Ne time-window compared to the young group in the flanker task [Figure 3]. In the rotation task the Ne-IC cluster also explained less percent of variation [10%<39%] for older compared to younger subjects[Figure 3]. The explained percent of variance was estimated by including only subjects which showed a Ne-IC.


Aging and error processing: age related increase in the variability of the error-negativity is not accompanied by increase in response variability.

Hoffmann S, Falkenstein M - PLoS ONE (2011)

Dipole localizations and contributions of the Ne-IC cluster to the grand average ERP.Upper panel: Dipole localizations of the Ne-IC cluster of the young group [Tal(x,y,z) = 2,10, 19; residual variance = 7.11%] and older subjects [Tal(x,y,z) = −1,10, 26; residual variance  = 7.1%].(young = green, old = blue). Lower panel: Contributions of the Ne-IC clusters of each group in the time-window from 0–150 ms following response. Flanker task: The Ne-IC of young subjects cluster accounted for about 51% of variation in the time window 0–150 ms following erroneous response. The Ne-IC of older participants accounted for about 11% of variation in the Ne time window. Rotation task: Here, Ne-IC cluster of older participants accounted for fewer percent of variation compared to younger subjects, too [39.8%<10.42%].
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3046248&req=5

pone-0017482-g003: Dipole localizations and contributions of the Ne-IC cluster to the grand average ERP.Upper panel: Dipole localizations of the Ne-IC cluster of the young group [Tal(x,y,z) = 2,10, 19; residual variance = 7.11%] and older subjects [Tal(x,y,z) = −1,10, 26; residual variance  = 7.1%].(young = green, old = blue). Lower panel: Contributions of the Ne-IC clusters of each group in the time-window from 0–150 ms following response. Flanker task: The Ne-IC of young subjects cluster accounted for about 51% of variation in the time window 0–150 ms following erroneous response. The Ne-IC of older participants accounted for about 11% of variation in the Ne time window. Rotation task: Here, Ne-IC cluster of older participants accounted for fewer percent of variation compared to younger subjects, too [39.8%<10.42%].
Mentions: In older subjects the Ne-IC cluster explained less percent of variation [11%<51%] in the Ne time-window compared to the young group in the flanker task [Figure 3]. In the rotation task the Ne-IC cluster also explained less percent of variation [10%<39%] for older compared to younger subjects[Figure 3]. The explained percent of variance was estimated by including only subjects which showed a Ne-IC.

Bottom Line: In the present study we aimed to investigate whether the Ne reduction usually found in older subjects is due to an altered component structure, i.e., a true alteration in response monitoring in older subjects.The results show a genuine reduction as well as a different component structure of the Ne in older compared to young subjects.Hence, the results indicate that older subjects can compensate the reduction in control reflected in the reduced Ne, at least in simple tasks that induce reaction slips.

View Article: PubMed Central - PubMed

Affiliation: Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany. shoffmann@ifado.de

ABSTRACT

Background: Several studies report an amplitude reduction of the error negativity (Ne or ERN), an event-related potential occurring after erroneous responses, in older participants. In earlier studies it was shown that the Ne can be explained by a single independent component. In the present study we aimed to investigate whether the Ne reduction usually found in older subjects is due to an altered component structure, i.e., a true alteration in response monitoring in older subjects.

Methodology/principal findings: Two age groups conducted two tasks with different stimulus response mappings and task difficulty. Both groups received fully balanced speed or accuracy instructions and an individually adapted deadline in both tasks. Event-related potentials, Independent Component analysis of EEG-data and between trial variability of the Ne were combined with analysis of error rates, coefficients of variation of RT-data and ex-Gaussian fittings to reaction times. The Ne was examined by means of ICA and PCA, yielding a prominent independent component on error trials, the Ne-IC. The Ne-IC was smaller in the older than the younger subjects for both speed and accuracy instructions. Also, the Ne-IC contributed to a much lesser extent to the Ne in older than in younger subjects. RT distribution parameters were not related to Ne/ERP-variability.

Conclusions/significance: The results show a genuine reduction as well as a different component structure of the Ne in older compared to young subjects. This reduction is not reflected in behaviour, apart from a general slowing of older participants. Also, the Ne decline in the elderly is not due to speed accuracy trade-off. Hence, the results indicate that older subjects can compensate the reduction in control reflected in the reduced Ne, at least in simple tasks that induce reaction slips.

Show MeSH
Related in: MedlinePlus