Limits...
Individual differences in sound-in-noise perception are related to the strength of short-latency neural responses to noise.

Vinnik E, Itskov PM, Balaban E - PLoS ONE (2011)

Bottom Line: Important sounds can be easily missed or misidentified in the presence of extraneous noise.Participants strongly susceptible to this illusory discontinuity did not perceive illusory auditory continuity (in which a sound subjectively continues during a burst of masking noise) when the noises were short, yet did so at longer noise durations.These data suggest that short-latency neural responses to auditory scene components reflect subsequent individual differences in the parsing of auditory scenes.

View Article: PubMed Central - PubMed

Affiliation: Cognitive Neuroscience Sector, SISSA, Trieste, Italy. vinnik.ekaterina@gmail.com

ABSTRACT
Important sounds can be easily missed or misidentified in the presence of extraneous noise. We describe an auditory illusion in which a continuous ongoing tone becomes inaudible during a brief, non-masking noise burst more than one octave away, which is unexpected given the frequency resolution of human hearing. Participants strongly susceptible to this illusory discontinuity did not perceive illusory auditory continuity (in which a sound subjectively continues during a burst of masking noise) when the noises were short, yet did so at longer noise durations. Participants who were not prone to illusory discontinuity showed robust early electroencephalographic responses at 40-66 ms after noise burst onset, whereas those prone to the illusion lacked these early responses. These data suggest that short-latency neural responses to auditory scene components reflect subsequent individual differences in the parsing of auditory scenes.

Show MeSH

Related in: MedlinePlus

Illusory discontinuity.a. Individual performance in the continuous-tone-with spectrally-remote noise condition (Figure 1a). Subjects that exhibited illusory auditory discontinuity in trials with 50-ms noise bursts are drawn with black lines plotted in the foreground; all other subjects are plotted in gray. The color of the points indicates individual performance relative to chance levels defined by the binomial distribution. “Above chance” performance indicates a proportion of continuous responses significantly greater than chance at the p<0.05 level, while “below chance” indicates significantly fewer continuous responses than expected by chance (n = 46 for noise durations of 50, 500, and 2000 ms, n = 18 for 75,100 and 200 ms; individual chance levels are slightly different because of different numbers of trials.) b. Relationship between continuity responses in the continuous tone with spectrally remote noise condition (y-axis) and discontinuous tone covered by noise condition (x-axis). Each dot is a single subject; data come from 50 ms noise durations, n = 46. c. Distribution of individual response biases. ‘−1’ signifies a bias towards ‘discontinuous’ responses, and ‘1’ a bias towards ‘continuous’ responses. The data come from the same trials with 50-ms noises (n = 46).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3046163&req=5

pone-0017266-g002: Illusory discontinuity.a. Individual performance in the continuous-tone-with spectrally-remote noise condition (Figure 1a). Subjects that exhibited illusory auditory discontinuity in trials with 50-ms noise bursts are drawn with black lines plotted in the foreground; all other subjects are plotted in gray. The color of the points indicates individual performance relative to chance levels defined by the binomial distribution. “Above chance” performance indicates a proportion of continuous responses significantly greater than chance at the p<0.05 level, while “below chance” indicates significantly fewer continuous responses than expected by chance (n = 46 for noise durations of 50, 500, and 2000 ms, n = 18 for 75,100 and 200 ms; individual chance levels are slightly different because of different numbers of trials.) b. Relationship between continuity responses in the continuous tone with spectrally remote noise condition (y-axis) and discontinuous tone covered by noise condition (x-axis). Each dot is a single subject; data come from 50 ms noise durations, n = 46. c. Distribution of individual response biases. ‘−1’ signifies a bias towards ‘discontinuous’ responses, and ‘1’ a bias towards ‘continuous’ responses. The data come from the same trials with 50-ms noises (n = 46).

Mentions: We found a notable variability in individual performance in the continuous tone condition: it ranged from zero percent correct to 100% correct (Fig. 2a). Similar variability was seen in the continuity illusion condition, indicating that individual performance may have been influenced by response biases. Indeed, the distribution of response bias in trials with 50 ms noise was clearly bimodal (Fig. 2c; see Methods).


Individual differences in sound-in-noise perception are related to the strength of short-latency neural responses to noise.

Vinnik E, Itskov PM, Balaban E - PLoS ONE (2011)

Illusory discontinuity.a. Individual performance in the continuous-tone-with spectrally-remote noise condition (Figure 1a). Subjects that exhibited illusory auditory discontinuity in trials with 50-ms noise bursts are drawn with black lines plotted in the foreground; all other subjects are plotted in gray. The color of the points indicates individual performance relative to chance levels defined by the binomial distribution. “Above chance” performance indicates a proportion of continuous responses significantly greater than chance at the p<0.05 level, while “below chance” indicates significantly fewer continuous responses than expected by chance (n = 46 for noise durations of 50, 500, and 2000 ms, n = 18 for 75,100 and 200 ms; individual chance levels are slightly different because of different numbers of trials.) b. Relationship between continuity responses in the continuous tone with spectrally remote noise condition (y-axis) and discontinuous tone covered by noise condition (x-axis). Each dot is a single subject; data come from 50 ms noise durations, n = 46. c. Distribution of individual response biases. ‘−1’ signifies a bias towards ‘discontinuous’ responses, and ‘1’ a bias towards ‘continuous’ responses. The data come from the same trials with 50-ms noises (n = 46).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3046163&req=5

pone-0017266-g002: Illusory discontinuity.a. Individual performance in the continuous-tone-with spectrally-remote noise condition (Figure 1a). Subjects that exhibited illusory auditory discontinuity in trials with 50-ms noise bursts are drawn with black lines plotted in the foreground; all other subjects are plotted in gray. The color of the points indicates individual performance relative to chance levels defined by the binomial distribution. “Above chance” performance indicates a proportion of continuous responses significantly greater than chance at the p<0.05 level, while “below chance” indicates significantly fewer continuous responses than expected by chance (n = 46 for noise durations of 50, 500, and 2000 ms, n = 18 for 75,100 and 200 ms; individual chance levels are slightly different because of different numbers of trials.) b. Relationship between continuity responses in the continuous tone with spectrally remote noise condition (y-axis) and discontinuous tone covered by noise condition (x-axis). Each dot is a single subject; data come from 50 ms noise durations, n = 46. c. Distribution of individual response biases. ‘−1’ signifies a bias towards ‘discontinuous’ responses, and ‘1’ a bias towards ‘continuous’ responses. The data come from the same trials with 50-ms noises (n = 46).
Mentions: We found a notable variability in individual performance in the continuous tone condition: it ranged from zero percent correct to 100% correct (Fig. 2a). Similar variability was seen in the continuity illusion condition, indicating that individual performance may have been influenced by response biases. Indeed, the distribution of response bias in trials with 50 ms noise was clearly bimodal (Fig. 2c; see Methods).

Bottom Line: Important sounds can be easily missed or misidentified in the presence of extraneous noise.Participants strongly susceptible to this illusory discontinuity did not perceive illusory auditory continuity (in which a sound subjectively continues during a burst of masking noise) when the noises were short, yet did so at longer noise durations.These data suggest that short-latency neural responses to auditory scene components reflect subsequent individual differences in the parsing of auditory scenes.

View Article: PubMed Central - PubMed

Affiliation: Cognitive Neuroscience Sector, SISSA, Trieste, Italy. vinnik.ekaterina@gmail.com

ABSTRACT
Important sounds can be easily missed or misidentified in the presence of extraneous noise. We describe an auditory illusion in which a continuous ongoing tone becomes inaudible during a brief, non-masking noise burst more than one octave away, which is unexpected given the frequency resolution of human hearing. Participants strongly susceptible to this illusory discontinuity did not perceive illusory auditory continuity (in which a sound subjectively continues during a burst of masking noise) when the noises were short, yet did so at longer noise durations. Participants who were not prone to illusory discontinuity showed robust early electroencephalographic responses at 40-66 ms after noise burst onset, whereas those prone to the illusion lacked these early responses. These data suggest that short-latency neural responses to auditory scene components reflect subsequent individual differences in the parsing of auditory scenes.

Show MeSH
Related in: MedlinePlus