Limits...
Functional genomics of the horn fly, Haematobia irritans (Linnaeus, 1758).

Torres L, Almazán C, Ayllón N, Galindo RC, Rosario-Cruz R, Quiroz-Romero H, de la Fuente J - BMC Genomics (2011)

Bottom Line: Gene knockdown by RNAi resulted in higher horn fly mortality (protease inhibitor functional group), reduced oviposition (vitellogenin, ferritin and vATPase groups) or both (immune response and 5'-NUC groups) when compared to controls.Silencing of ubiquitination ESTs did not affect horn fly mortality and oviposition while gene knockdown in the ferritin and vATPse functional groups reduced mortality when compared to controls.These results advanced the molecular characterization of this important ectoparasite and suggested candidate protective antigens for the development of vaccines for the control of horn fly infestations.

View Article: PubMed Central - HTML - PubMed

Affiliation: Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km, 5 carretera Victoria-Mante, CP 87000 Ciudad Victoria, Tamaulipas, Mexico.

ABSTRACT

Background: The horn fly, Haematobia irritans (Linnaeus, 1758) (Diptera: Muscidae) is one of the most important ectoparasites of pastured cattle. Horn flies infestations reduce cattle weight gain and milk production. Additionally, horn flies are mechanical vectors of different pathogens that cause disease in cattle. The aim of this study was to conduct a functional genomics study in female horn flies using Expressed Sequence Tags (EST) analysis and RNA interference (RNAi).

Results: A cDNA library was made from whole abdominal tissues collected from partially fed adult female horn flies. High quality horn fly ESTs (2,160) were sequenced and assembled into 992 unigenes (178 contigs and 814 singlets) representing molecular functions such as serine proteases, cell metabolism, mitochondrial function, transcription and translation, transport, chromatin structure, vitellogenesis, cytoskeleton, DNA replication, cell response to stress and infection, cell proliferation and cell-cell interactions, intracellular trafficking and secretion, and development. Functional analyses were conducted using RNAi for the first time in horn flies. Gene knockdown by RNAi resulted in higher horn fly mortality (protease inhibitor functional group), reduced oviposition (vitellogenin, ferritin and vATPase groups) or both (immune response and 5'-NUC groups) when compared to controls. Silencing of ubiquitination ESTs did not affect horn fly mortality and oviposition while gene knockdown in the ferritin and vATPse functional groups reduced mortality when compared to controls.

Conclusions: These results advanced the molecular characterization of this important ectoparasite and suggested candidate protective antigens for the development of vaccines for the control of horn fly infestations.

Show MeSH

Related in: MedlinePlus

Pairwise sequence alignment of dsRNA sequences showing homology regions ≥ 11 nucleotides. Sequence alignments were done between the sequences used in the experiment described in figure 3. Abbreviation: ND, not determined.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3045961&req=5

Figure 4: Pairwise sequence alignment of dsRNA sequences showing homology regions ≥ 11 nucleotides. Sequence alignments were done between the sequences used in the experiment described in figure 3. Abbreviation: ND, not determined.

Mentions: To analyze RNAi off-target effects, the expression of genes not targeted by the injected dsRNA was analyzed at 12 hpi in functional groups 7-9 (Figure 3). The results showed that the expression of genes not targeted by the injected dsRNA was silenced in all three groups analyzed (Figure 3), thus suggesting RNAi off-target effects in horn flies. Pairwise sequence alignments identified regions with homology ≥ 11 bp in some sequences (Figure 4). However, only one region had 21 bp homology between unigene sequences 13_D07 and 7_A04 (Figure 4).


Functional genomics of the horn fly, Haematobia irritans (Linnaeus, 1758).

Torres L, Almazán C, Ayllón N, Galindo RC, Rosario-Cruz R, Quiroz-Romero H, de la Fuente J - BMC Genomics (2011)

Pairwise sequence alignment of dsRNA sequences showing homology regions ≥ 11 nucleotides. Sequence alignments were done between the sequences used in the experiment described in figure 3. Abbreviation: ND, not determined.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3045961&req=5

Figure 4: Pairwise sequence alignment of dsRNA sequences showing homology regions ≥ 11 nucleotides. Sequence alignments were done between the sequences used in the experiment described in figure 3. Abbreviation: ND, not determined.
Mentions: To analyze RNAi off-target effects, the expression of genes not targeted by the injected dsRNA was analyzed at 12 hpi in functional groups 7-9 (Figure 3). The results showed that the expression of genes not targeted by the injected dsRNA was silenced in all three groups analyzed (Figure 3), thus suggesting RNAi off-target effects in horn flies. Pairwise sequence alignments identified regions with homology ≥ 11 bp in some sequences (Figure 4). However, only one region had 21 bp homology between unigene sequences 13_D07 and 7_A04 (Figure 4).

Bottom Line: Gene knockdown by RNAi resulted in higher horn fly mortality (protease inhibitor functional group), reduced oviposition (vitellogenin, ferritin and vATPase groups) or both (immune response and 5'-NUC groups) when compared to controls.Silencing of ubiquitination ESTs did not affect horn fly mortality and oviposition while gene knockdown in the ferritin and vATPse functional groups reduced mortality when compared to controls.These results advanced the molecular characterization of this important ectoparasite and suggested candidate protective antigens for the development of vaccines for the control of horn fly infestations.

View Article: PubMed Central - HTML - PubMed

Affiliation: Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km, 5 carretera Victoria-Mante, CP 87000 Ciudad Victoria, Tamaulipas, Mexico.

ABSTRACT

Background: The horn fly, Haematobia irritans (Linnaeus, 1758) (Diptera: Muscidae) is one of the most important ectoparasites of pastured cattle. Horn flies infestations reduce cattle weight gain and milk production. Additionally, horn flies are mechanical vectors of different pathogens that cause disease in cattle. The aim of this study was to conduct a functional genomics study in female horn flies using Expressed Sequence Tags (EST) analysis and RNA interference (RNAi).

Results: A cDNA library was made from whole abdominal tissues collected from partially fed adult female horn flies. High quality horn fly ESTs (2,160) were sequenced and assembled into 992 unigenes (178 contigs and 814 singlets) representing molecular functions such as serine proteases, cell metabolism, mitochondrial function, transcription and translation, transport, chromatin structure, vitellogenesis, cytoskeleton, DNA replication, cell response to stress and infection, cell proliferation and cell-cell interactions, intracellular trafficking and secretion, and development. Functional analyses were conducted using RNAi for the first time in horn flies. Gene knockdown by RNAi resulted in higher horn fly mortality (protease inhibitor functional group), reduced oviposition (vitellogenin, ferritin and vATPase groups) or both (immune response and 5'-NUC groups) when compared to controls. Silencing of ubiquitination ESTs did not affect horn fly mortality and oviposition while gene knockdown in the ferritin and vATPse functional groups reduced mortality when compared to controls.

Conclusions: These results advanced the molecular characterization of this important ectoparasite and suggested candidate protective antigens for the development of vaccines for the control of horn fly infestations.

Show MeSH
Related in: MedlinePlus