Limits...
Reduction of claustrophobia during magnetic resonance imaging: methods and design of the "CLAUSTRO" randomized controlled trial.

Enders J, Zimmermann E, Rief M, Martus P, Klingebiel R, Asbach P, Klessen C, Diederichs G, Bengner T, Teichgräber U, Hamm B, Dewey M - BMC Med Imaging (2011)

Bottom Line: Magnetic resonance (MR) imaging has been described as the most important medical innovation in the last 25 years.A more open scanner configuration might help reduce claustrophobic reactions while maintaining image quality and diagnostic accuracy.We propose to analyze the rate of claustrophobic reactions, clinical utility, image quality, patient acceptance, and cost-effectiveness of an open MR scanner in a randomized comparison with a recently designed short-bore but closed scanner with 97% noise reduction.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departments of Radiology, Charité, Medical School, Humboldt Universität zu Berlin and Freie Universität Berlin, Germany.

ABSTRACT

Background: Magnetic resonance (MR) imaging has been described as the most important medical innovation in the last 25 years. Over 80 million MR procedures are now performed each year and on average 2.3% (95% confidence interval: 2.0 to 2.5%) of all patients scheduled for MR imaging suffer from claustrophobia. Thus, prevention of MR imaging by claustrophobia is a common problem and approximately 2,000,000 MR procedures worldwide cannot be completed due to this situation. Patients with claustrophobic anxiety are more likely to be frightened and experience a feeling of confinement or being closed in during MR imaging. In these patients, conscious sedation and additional sequences (after sedation) may be necessary to complete the examinations. Further improvements in MR design appear to be essential to alleviate this situation and broaden the applicability of MR imaging. A more open scanner configuration might help reduce claustrophobic reactions while maintaining image quality and diagnostic accuracy.

Methods/design: We propose to analyze the rate of claustrophobic reactions, clinical utility, image quality, patient acceptance, and cost-effectiveness of an open MR scanner in a randomized comparison with a recently designed short-bore but closed scanner with 97% noise reduction. The primary aim of this study is thus to determine whether an open MR scanner can reduce claustrophobic reactions, thereby enabling more examinations of claustrophobic patients without incurring the safety issues associated with conscious sedation. In this manuscript we detail the methods and design of the prospective "CLAUSTRO" trial.

Discussion: This randomized controlled trial will be the first direct comparison of open vertical and closed short-bore MR systems in regards to claustrophobia and image quality as well as diagnostic utility.

Trial registration: ClinicalTrials.gov: NCT00715806.

Show MeSH

Related in: MedlinePlus

Chart of CLAUSTRO study design. The diagram depicts the randomization procedure, patient flow, and data analysis. Abbreviations: AKV = Fragebogen zu körperbezogenen Ängsten, Kognitionen und Vermeidung [19]. BDI-II = Beck Depression Inventory II [24]. CF = Consent Form. CLQ = Claustrophobia Questionnaire [21]. FSS-III = Fear Survey Schedule III [20]. RWCCL = Revised Ways of Coping Checklist [29]. STAI = State-Trait Anxiety Inventory [18].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3045881&req=5

Figure 3: Chart of CLAUSTRO study design. The diagram depicts the randomization procedure, patient flow, and data analysis. Abbreviations: AKV = Fragebogen zu körperbezogenen Ängsten, Kognitionen und Vermeidung [19]. BDI-II = Beck Depression Inventory II [24]. CF = Consent Form. CLQ = Claustrophobia Questionnaire [21]. FSS-III = Fear Survey Schedule III [20]. RWCCL = Revised Ways of Coping Checklist [29]. STAI = State-Trait Anxiety Inventory [18].

Mentions: This is a randomized controlled trial of patients with reported claustrophobia during prior MR imaging or with the inability to undergo MR imaging in conventional scanners. Eligible patients will be randomly assigned to one of the following study groups. 1) The open MR scanner: imaging will be performed in a state-of-the-art scanner with a vertical magnetic field and 360° open design and 1-T field strength (Panorama, Philips, Figure 2A) [14], and 2) A state-of-the-art MR scanner (control group) without an open design but significant noise reduction of 97% (to below 99 dB(A)) and patient-centered design (short and wide bore) with 1.5-T field strength, which has already been shown to reduce claustrophobia by a factor of 3 compared with conventional MR scanners (Magnetom Avanto, Siemens, Figure 2B) [3]. The study design is shown in Figure 3.


Reduction of claustrophobia during magnetic resonance imaging: methods and design of the "CLAUSTRO" randomized controlled trial.

Enders J, Zimmermann E, Rief M, Martus P, Klingebiel R, Asbach P, Klessen C, Diederichs G, Bengner T, Teichgräber U, Hamm B, Dewey M - BMC Med Imaging (2011)

Chart of CLAUSTRO study design. The diagram depicts the randomization procedure, patient flow, and data analysis. Abbreviations: AKV = Fragebogen zu körperbezogenen Ängsten, Kognitionen und Vermeidung [19]. BDI-II = Beck Depression Inventory II [24]. CF = Consent Form. CLQ = Claustrophobia Questionnaire [21]. FSS-III = Fear Survey Schedule III [20]. RWCCL = Revised Ways of Coping Checklist [29]. STAI = State-Trait Anxiety Inventory [18].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3045881&req=5

Figure 3: Chart of CLAUSTRO study design. The diagram depicts the randomization procedure, patient flow, and data analysis. Abbreviations: AKV = Fragebogen zu körperbezogenen Ängsten, Kognitionen und Vermeidung [19]. BDI-II = Beck Depression Inventory II [24]. CF = Consent Form. CLQ = Claustrophobia Questionnaire [21]. FSS-III = Fear Survey Schedule III [20]. RWCCL = Revised Ways of Coping Checklist [29]. STAI = State-Trait Anxiety Inventory [18].
Mentions: This is a randomized controlled trial of patients with reported claustrophobia during prior MR imaging or with the inability to undergo MR imaging in conventional scanners. Eligible patients will be randomly assigned to one of the following study groups. 1) The open MR scanner: imaging will be performed in a state-of-the-art scanner with a vertical magnetic field and 360° open design and 1-T field strength (Panorama, Philips, Figure 2A) [14], and 2) A state-of-the-art MR scanner (control group) without an open design but significant noise reduction of 97% (to below 99 dB(A)) and patient-centered design (short and wide bore) with 1.5-T field strength, which has already been shown to reduce claustrophobia by a factor of 3 compared with conventional MR scanners (Magnetom Avanto, Siemens, Figure 2B) [3]. The study design is shown in Figure 3.

Bottom Line: Magnetic resonance (MR) imaging has been described as the most important medical innovation in the last 25 years.A more open scanner configuration might help reduce claustrophobic reactions while maintaining image quality and diagnostic accuracy.We propose to analyze the rate of claustrophobic reactions, clinical utility, image quality, patient acceptance, and cost-effectiveness of an open MR scanner in a randomized comparison with a recently designed short-bore but closed scanner with 97% noise reduction.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departments of Radiology, Charité, Medical School, Humboldt Universität zu Berlin and Freie Universität Berlin, Germany.

ABSTRACT

Background: Magnetic resonance (MR) imaging has been described as the most important medical innovation in the last 25 years. Over 80 million MR procedures are now performed each year and on average 2.3% (95% confidence interval: 2.0 to 2.5%) of all patients scheduled for MR imaging suffer from claustrophobia. Thus, prevention of MR imaging by claustrophobia is a common problem and approximately 2,000,000 MR procedures worldwide cannot be completed due to this situation. Patients with claustrophobic anxiety are more likely to be frightened and experience a feeling of confinement or being closed in during MR imaging. In these patients, conscious sedation and additional sequences (after sedation) may be necessary to complete the examinations. Further improvements in MR design appear to be essential to alleviate this situation and broaden the applicability of MR imaging. A more open scanner configuration might help reduce claustrophobic reactions while maintaining image quality and diagnostic accuracy.

Methods/design: We propose to analyze the rate of claustrophobic reactions, clinical utility, image quality, patient acceptance, and cost-effectiveness of an open MR scanner in a randomized comparison with a recently designed short-bore but closed scanner with 97% noise reduction. The primary aim of this study is thus to determine whether an open MR scanner can reduce claustrophobic reactions, thereby enabling more examinations of claustrophobic patients without incurring the safety issues associated with conscious sedation. In this manuscript we detail the methods and design of the prospective "CLAUSTRO" trial.

Discussion: This randomized controlled trial will be the first direct comparison of open vertical and closed short-bore MR systems in regards to claustrophobia and image quality as well as diagnostic utility.

Trial registration: ClinicalTrials.gov: NCT00715806.

Show MeSH
Related in: MedlinePlus