Limits...
Biology of the sauropod dinosaurs: the evolution of gigantism.

Sander PM, Christian A, Clauss M, Fechner R, Gee CT, Griebeler EM, Gunga HC, Hummel J, Mallison H, Perry SF, Preuschoft H, Rauhut OW, Remes K, Tütken T, Wings O, Witzel U - Biol Rev Camb Philos Soc (2011)

Bottom Line: Scaling relationships between gastrointestinal tract size and basal metabolic rate (BMR) suggest that sauropods compensated for the lack of particle reduction with long retention times, even at high uptake rates.The extensive pneumatization of the axial skeleton resulted from the evolution of an avian-style respiratory system, presumably at the base of Saurischia.An avian-style respiratory system would also have lowered the cost of breathing, reduced specific gravity, and may have been important in removing excess body heat.

View Article: PubMed Central - PubMed

Affiliation: Steinmann Institute, University of Bonn, Germany. martin.sander@uni-bonn.de

Show MeSH

Related in: MedlinePlus

Comparison of body masses of sauropod dinosaurs, theropod and ornithischian dinosaurs and mammals. The mass data for sauropods are found in Table 1, while those for the other dinosaurs are primarily from Seebacher (2001) with additional data from Christiansen (1997) and Anderson et al. (1985). The data for mammals were compiled from Janis & Carrano (1992), Fortelius & Kappelman (1993), and Spoor et al. (2007). With the exception of the two largest forms they represent extant mammals only. Mammals show a strongly right-skewed distribution, theropods and ornithischians show intermediate masses, and sauropods show a strongly left-skewed distribution. Not that the y-axis is logarithmic.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3045712&req=5

fig02: Comparison of body masses of sauropod dinosaurs, theropod and ornithischian dinosaurs and mammals. The mass data for sauropods are found in Table 1, while those for the other dinosaurs are primarily from Seebacher (2001) with additional data from Christiansen (1997) and Anderson et al. (1985). The data for mammals were compiled from Janis & Carrano (1992), Fortelius & Kappelman (1993), and Spoor et al. (2007). With the exception of the two largest forms they represent extant mammals only. Mammals show a strongly right-skewed distribution, theropods and ornithischians show intermediate masses, and sauropods show a strongly left-skewed distribution. Not that the y-axis is logarithmic.

Mentions: Large body size evolved very early on and remained a hallmark throughout sauropod evolution (Dodson, 1990). The discrepancy in body size between other dinosaurs and sauropods, as well as between the largest land mammals and sauropods (Figs 1, 2), has recently been highlighted by the availability of more accurate mass estimates (see Table 1) calculated from volume estimates based on photogrammetric measurements of actual skeletons (Gunga et al., 2007, 2008; Stoinski, Suthau & Gunga, in press) or based on scientific reconstructions (e.g. Paul, 1987, 1997a; Henderson, 1999, 2006; Seebacher, 2001). These estimates place common sauropods consistently in the 15–40 t category (Table 1). In addition, there are a number of very large sauropods, e.g. the basal macronarian Sauroposeidon (Wedel, Cifelli & Sanders, 2000a, b) and the titanosaur Argentinosaurus, for which published estimates (reviewed in Mazzetta, Christiansen & Farina, 2004) are a staggering 70–90 t! Small sauropod species with an adult body mass of less than 4–5 t are almost unknown (Table 1) with the exception of several dwarf forms from palaeo-islands (Weishampel, Grigorescu & Norman, 1991; Jianu & Weishampel, 1999; Dalla Vecchia, 2005; Sander et al., 2006; Benton et al., 2010; Stein et al., in press).


Biology of the sauropod dinosaurs: the evolution of gigantism.

Sander PM, Christian A, Clauss M, Fechner R, Gee CT, Griebeler EM, Gunga HC, Hummel J, Mallison H, Perry SF, Preuschoft H, Rauhut OW, Remes K, Tütken T, Wings O, Witzel U - Biol Rev Camb Philos Soc (2011)

Comparison of body masses of sauropod dinosaurs, theropod and ornithischian dinosaurs and mammals. The mass data for sauropods are found in Table 1, while those for the other dinosaurs are primarily from Seebacher (2001) with additional data from Christiansen (1997) and Anderson et al. (1985). The data for mammals were compiled from Janis & Carrano (1992), Fortelius & Kappelman (1993), and Spoor et al. (2007). With the exception of the two largest forms they represent extant mammals only. Mammals show a strongly right-skewed distribution, theropods and ornithischians show intermediate masses, and sauropods show a strongly left-skewed distribution. Not that the y-axis is logarithmic.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3045712&req=5

fig02: Comparison of body masses of sauropod dinosaurs, theropod and ornithischian dinosaurs and mammals. The mass data for sauropods are found in Table 1, while those for the other dinosaurs are primarily from Seebacher (2001) with additional data from Christiansen (1997) and Anderson et al. (1985). The data for mammals were compiled from Janis & Carrano (1992), Fortelius & Kappelman (1993), and Spoor et al. (2007). With the exception of the two largest forms they represent extant mammals only. Mammals show a strongly right-skewed distribution, theropods and ornithischians show intermediate masses, and sauropods show a strongly left-skewed distribution. Not that the y-axis is logarithmic.
Mentions: Large body size evolved very early on and remained a hallmark throughout sauropod evolution (Dodson, 1990). The discrepancy in body size between other dinosaurs and sauropods, as well as between the largest land mammals and sauropods (Figs 1, 2), has recently been highlighted by the availability of more accurate mass estimates (see Table 1) calculated from volume estimates based on photogrammetric measurements of actual skeletons (Gunga et al., 2007, 2008; Stoinski, Suthau & Gunga, in press) or based on scientific reconstructions (e.g. Paul, 1987, 1997a; Henderson, 1999, 2006; Seebacher, 2001). These estimates place common sauropods consistently in the 15–40 t category (Table 1). In addition, there are a number of very large sauropods, e.g. the basal macronarian Sauroposeidon (Wedel, Cifelli & Sanders, 2000a, b) and the titanosaur Argentinosaurus, for which published estimates (reviewed in Mazzetta, Christiansen & Farina, 2004) are a staggering 70–90 t! Small sauropod species with an adult body mass of less than 4–5 t are almost unknown (Table 1) with the exception of several dwarf forms from palaeo-islands (Weishampel, Grigorescu & Norman, 1991; Jianu & Weishampel, 1999; Dalla Vecchia, 2005; Sander et al., 2006; Benton et al., 2010; Stein et al., in press).

Bottom Line: Scaling relationships between gastrointestinal tract size and basal metabolic rate (BMR) suggest that sauropods compensated for the lack of particle reduction with long retention times, even at high uptake rates.The extensive pneumatization of the axial skeleton resulted from the evolution of an avian-style respiratory system, presumably at the base of Saurischia.An avian-style respiratory system would also have lowered the cost of breathing, reduced specific gravity, and may have been important in removing excess body heat.

View Article: PubMed Central - PubMed

Affiliation: Steinmann Institute, University of Bonn, Germany. martin.sander@uni-bonn.de

Show MeSH
Related in: MedlinePlus