Limits...
Early maternal deprivation affects dentate gyrus structure and emotional learning in adult female rats.

Oomen CA, Soeters H, Audureau N, Vermunt L, van Hasselt FN, Manders EM, Joëls M, Krugers H, Lucassen PJ - Psychopharmacology (Berl.) (2010)

Bottom Line: No effects on the rate of adult neurogenesis were found.Furthermore, MD did not alter synaptic plasticity in vitro, neither under normal nor high-stress conditions.Although early life stress exposure did not impair hippocampus-dependent functioning in female offspring, it irreversibly affected DG structure by reducing cell numbers.

View Article: PubMed Central - PubMed

Affiliation: Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands. c.a.oomen@uva.nl

ABSTRACT

Rationale: Stress elicits functional and structural changes in the hippocampus. Early life stress is one of the major risk factors for stress-related pathologies like depression. Patients suffering from depression show a reduced hippocampal volume, and in women, this occurs more often when depression is preceded by childhood trauma. However, the underlying mechanisms that account for a reduced hippocampal volume are unknown.

Objective: We examined the effects of maternal absence on structure and function of the hippocampus in female offspring.

Methods: We studied whether 24 h of maternal deprivation (MD) on postnatal day 3 altered adult neurogenesis, individual neuronal morphology and dentate gyrus (DG) structure in young adult female rats. In addition, functional alterations were addressed by studying synaptic plasticity in vitro, and spatial as well as emotional learning was tested.

Results: Adult females that were subjected to MD revealed significant reductions in DG granule cell number and density. In addition, DG neurons were altered in their dendritic arrangement. No effects on the rate of adult neurogenesis were found. Furthermore, MD did not alter synaptic plasticity in vitro, neither under normal nor high-stress conditions. In addition, spatial learning and contextual fear conditioning were comparable between control and MD animals. However, MD animals showed an improved amygdala-dependent fear memory.

Conclusion: Although early life stress exposure did not impair hippocampus-dependent functioning in female offspring, it irreversibly affected DG structure by reducing cell numbers. This may be relevant for the reduced hippocampal volume observed in depression and the increased vulnerability of women to develop depression.

Show MeSH

Related in: MedlinePlus

Effects of MD on the granule cell layer of the hippocampal dentate gyrus. a MD treatment caused a significant reduction in absolute granule cell numbers (p = 0.04) as well as b cell density (p = 0.03; both groups n = 8)
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3045507&req=5

Fig1: Effects of MD on the granule cell layer of the hippocampal dentate gyrus. a MD treatment caused a significant reduction in absolute granule cell numbers (p = 0.04) as well as b cell density (p = 0.03; both groups n = 8)

Mentions: While neurogenesis was not affected by maternal deprivation, stereological quantification of the number of DG granule neurons revealed that maternal deprivation significantly reduced the total cell number (p = 0.04) and cell density (p = 0.03) in the GCL by about 12% (Fig. 1a, b), without affecting granular cell layer volume (CON 1.03 ± 0.03 mm3; MD 1.05 ± 0.02 mm3, p = 0.51) or the volume of the molecular layer (CON 3.26 ± 0.16 mm3; MD 3.25 ± 0.08 mm3, p = 0.94).Fig. 1


Early maternal deprivation affects dentate gyrus structure and emotional learning in adult female rats.

Oomen CA, Soeters H, Audureau N, Vermunt L, van Hasselt FN, Manders EM, Joëls M, Krugers H, Lucassen PJ - Psychopharmacology (Berl.) (2010)

Effects of MD on the granule cell layer of the hippocampal dentate gyrus. a MD treatment caused a significant reduction in absolute granule cell numbers (p = 0.04) as well as b cell density (p = 0.03; both groups n = 8)
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3045507&req=5

Fig1: Effects of MD on the granule cell layer of the hippocampal dentate gyrus. a MD treatment caused a significant reduction in absolute granule cell numbers (p = 0.04) as well as b cell density (p = 0.03; both groups n = 8)
Mentions: While neurogenesis was not affected by maternal deprivation, stereological quantification of the number of DG granule neurons revealed that maternal deprivation significantly reduced the total cell number (p = 0.04) and cell density (p = 0.03) in the GCL by about 12% (Fig. 1a, b), without affecting granular cell layer volume (CON 1.03 ± 0.03 mm3; MD 1.05 ± 0.02 mm3, p = 0.51) or the volume of the molecular layer (CON 3.26 ± 0.16 mm3; MD 3.25 ± 0.08 mm3, p = 0.94).Fig. 1

Bottom Line: No effects on the rate of adult neurogenesis were found.Furthermore, MD did not alter synaptic plasticity in vitro, neither under normal nor high-stress conditions.Although early life stress exposure did not impair hippocampus-dependent functioning in female offspring, it irreversibly affected DG structure by reducing cell numbers.

View Article: PubMed Central - PubMed

Affiliation: Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands. c.a.oomen@uva.nl

ABSTRACT

Rationale: Stress elicits functional and structural changes in the hippocampus. Early life stress is one of the major risk factors for stress-related pathologies like depression. Patients suffering from depression show a reduced hippocampal volume, and in women, this occurs more often when depression is preceded by childhood trauma. However, the underlying mechanisms that account for a reduced hippocampal volume are unknown.

Objective: We examined the effects of maternal absence on structure and function of the hippocampus in female offspring.

Methods: We studied whether 24 h of maternal deprivation (MD) on postnatal day 3 altered adult neurogenesis, individual neuronal morphology and dentate gyrus (DG) structure in young adult female rats. In addition, functional alterations were addressed by studying synaptic plasticity in vitro, and spatial as well as emotional learning was tested.

Results: Adult females that were subjected to MD revealed significant reductions in DG granule cell number and density. In addition, DG neurons were altered in their dendritic arrangement. No effects on the rate of adult neurogenesis were found. Furthermore, MD did not alter synaptic plasticity in vitro, neither under normal nor high-stress conditions. In addition, spatial learning and contextual fear conditioning were comparable between control and MD animals. However, MD animals showed an improved amygdala-dependent fear memory.

Conclusion: Although early life stress exposure did not impair hippocampus-dependent functioning in female offspring, it irreversibly affected DG structure by reducing cell numbers. This may be relevant for the reduced hippocampal volume observed in depression and the increased vulnerability of women to develop depression.

Show MeSH
Related in: MedlinePlus