Limits...
Interactions between the Nse3 and Nse4 components of the SMC5-6 complex identify evolutionarily conserved interactions between MAGE and EID Families.

Hudson JJ, Bednarova K, Kozakova L, Liao C, Guerineau M, Colnaghi R, Vidot S, Marek J, Bathula SR, Lehmann AR, Palecek J - PLoS ONE (2011)

Bottom Line: MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation) family of transcriptional repressors.Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1).We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins.

View Article: PubMed Central - PubMed

Affiliation: Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom.

ABSTRACT

Background: The SMC5-6 protein complex is involved in the cellular response to DNA damage. It is composed of 6-8 polypeptides, of which Nse1, Nse3 and Nse4 form a tight sub-complex. MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation) family of transcriptional repressors.

Methodology/principal findings: Using site-directed mutagenesis, protein-protein interaction analyses and molecular modelling, we have identified a conserved hydrophobic surface on the C-terminal domain of Nse3 that interacts with Nse4 and identified residues in its N-terminal domain that are essential for interaction with Nse1. We show that these interactions are conserved in the human orthologs. Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1). In an examination of the evolutionary conservation of the Nse3-Nse4 interactions, we find that several MAGE proteins can interact with at least one of the NSE4/EID proteins.

Conclusions/significance: We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins. Our work provides new insights into the interactions, evolution and functions of the enigmatic MAGE proteins.

Show MeSH

Related in: MedlinePlus

Interactions of MAGE proteins.(A) Data from co-immunoprecipitation experiments were analysed visually; + and − signify whether or not an interaction was detected. (B) Cartoon of MAGE interactions showing evolutionary diversification of hypothetical MAGE complexes.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3045436&req=5

pone-0017270-g009: Interactions of MAGE proteins.(A) Data from co-immunoprecipitation experiments were analysed visually; + and − signify whether or not an interaction was detected. (B) Cartoon of MAGE interactions showing evolutionary diversification of hypothetical MAGE complexes.

Mentions: The N-terminal part of yeast Nse4 mediates the interaction with Nse3 (Fig. 1C). Interestingly, NSE4a and NSE4b/EID3 are members of another gene family, the EID family, whose other members, namely EID1, 2 and 2b (Table 2), have substantial sequence identity to the N-terminal part of the Nse4 proteins (Figure 8A and [20]). Interactions of S-tagged MAGE proteins co-expressed with FLAG-tagged EID1, 2 and 2b in HEK293 cells are shown in Figure 8B–G. As with the NSE4 paralogs (Figure 7), we found that the MAGE proteins interacted with the EID proteins, albeit to different extents. Interestingly MAGEG1 did not interact with any of the EID proteins (Figure 8E, lanes 3, 6, 9) while MAGEF1 precipitated all of them (Fig. 8D, lanes 3, 6, 9). Because of different levels of expression of the different MAGE proteins, it is not possible to make quantitative comparisons, but a summary of all the interactions that we have analysed is presented in Figure 9A.


Interactions between the Nse3 and Nse4 components of the SMC5-6 complex identify evolutionarily conserved interactions between MAGE and EID Families.

Hudson JJ, Bednarova K, Kozakova L, Liao C, Guerineau M, Colnaghi R, Vidot S, Marek J, Bathula SR, Lehmann AR, Palecek J - PLoS ONE (2011)

Interactions of MAGE proteins.(A) Data from co-immunoprecipitation experiments were analysed visually; + and − signify whether or not an interaction was detected. (B) Cartoon of MAGE interactions showing evolutionary diversification of hypothetical MAGE complexes.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3045436&req=5

pone-0017270-g009: Interactions of MAGE proteins.(A) Data from co-immunoprecipitation experiments were analysed visually; + and − signify whether or not an interaction was detected. (B) Cartoon of MAGE interactions showing evolutionary diversification of hypothetical MAGE complexes.
Mentions: The N-terminal part of yeast Nse4 mediates the interaction with Nse3 (Fig. 1C). Interestingly, NSE4a and NSE4b/EID3 are members of another gene family, the EID family, whose other members, namely EID1, 2 and 2b (Table 2), have substantial sequence identity to the N-terminal part of the Nse4 proteins (Figure 8A and [20]). Interactions of S-tagged MAGE proteins co-expressed with FLAG-tagged EID1, 2 and 2b in HEK293 cells are shown in Figure 8B–G. As with the NSE4 paralogs (Figure 7), we found that the MAGE proteins interacted with the EID proteins, albeit to different extents. Interestingly MAGEG1 did not interact with any of the EID proteins (Figure 8E, lanes 3, 6, 9) while MAGEF1 precipitated all of them (Fig. 8D, lanes 3, 6, 9). Because of different levels of expression of the different MAGE proteins, it is not possible to make quantitative comparisons, but a summary of all the interactions that we have analysed is presented in Figure 9A.

Bottom Line: MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation) family of transcriptional repressors.Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1).We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins.

View Article: PubMed Central - PubMed

Affiliation: Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom.

ABSTRACT

Background: The SMC5-6 protein complex is involved in the cellular response to DNA damage. It is composed of 6-8 polypeptides, of which Nse1, Nse3 and Nse4 form a tight sub-complex. MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation) family of transcriptional repressors.

Methodology/principal findings: Using site-directed mutagenesis, protein-protein interaction analyses and molecular modelling, we have identified a conserved hydrophobic surface on the C-terminal domain of Nse3 that interacts with Nse4 and identified residues in its N-terminal domain that are essential for interaction with Nse1. We show that these interactions are conserved in the human orthologs. Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1). In an examination of the evolutionary conservation of the Nse3-Nse4 interactions, we find that several MAGE proteins can interact with at least one of the NSE4/EID proteins.

Conclusions/significance: We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins. Our work provides new insights into the interactions, evolution and functions of the enigmatic MAGE proteins.

Show MeSH
Related in: MedlinePlus