Limits...
Maternal high fat diet is associated with decreased plasma n-3 fatty acids and fetal hepatic apoptosis in nonhuman primates.

Grant WF, Gillingham MB, Batra AK, Fewkes NM, Comstock SM, Takahashi D, Braun TP, Grove KL, Friedman JE, Marks DL - PLoS ONE (2011)

Bottom Line: To begin to understand the contributions of maternal obesity and over-nutrition to human development and the early origins of obesity, we utilized a non-human primate model to investigate the effects of maternal high-fat feeding and obesity on breast milk, maternal and fetal plasma fatty acid composition and fetal hepatic development.Furthermore, the HFD fetal plasma n-6:n-3 ratio was elevated and was significantly correlated to the maternal plasma n-6:n-3 ratio and maternal hyperinsulinemia.This study links chronic maternal consumption of a HFD with fetal hepatic apoptosis and suggests that a potentially pathological maternal fatty acid milieu is replicated in the developing fetal circulation in the nonhuman primate.

View Article: PubMed Central - PubMed

Affiliation: Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon, United States of America.

ABSTRACT
To begin to understand the contributions of maternal obesity and over-nutrition to human development and the early origins of obesity, we utilized a non-human primate model to investigate the effects of maternal high-fat feeding and obesity on breast milk, maternal and fetal plasma fatty acid composition and fetal hepatic development. While the high-fat diet (HFD) contained equivalent levels of n-3 fatty acids (FA's) and higher levels of n-6 FA's than the control diet (CTR), we found significant decreases in docosahexaenoic acid (DHA) and total n-3 FA's in HFD maternal and fetal plasma. Furthermore, the HFD fetal plasma n-6:n-3 ratio was elevated and was significantly correlated to the maternal plasma n-6:n-3 ratio and maternal hyperinsulinemia. Hepatic apoptosis was also increased in the HFD fetal liver. Switching HFD females to a CTR diet during a subsequent pregnancy normalized fetal DHA, n-3 FA's and fetal hepatic apoptosis to CTR levels. Breast milk from HFD dams contained lower levels of eicosopentanoic acid (EPA) and DHA and lower levels of total protein than CTR breast milk. This study links chronic maternal consumption of a HFD with fetal hepatic apoptosis and suggests that a potentially pathological maternal fatty acid milieu is replicated in the developing fetal circulation in the nonhuman primate.

Show MeSH

Related in: MedlinePlus

Maternal breast milk insulin and protein.Analysis of insulin (A) and total protein levels (B) in breast milk from macaque dams in CTR (white bars) and HFD (black bars) maternal diet groups. A. Insulin was assayed by a commercially available primate RIA kit. HFD dams have significantly higher levels of insulin in their breast milk than CTR dams ( CTR; n = 11, HFD; n = 17, **P<.01 versus CTR, Wilcoxon rank sum test). B. Macaque breast milk total protein levels were measured from the aqueous layer using a BCA™ Protein Assay kit across CTR (white bars) and HFD (black bars) maternal diet groups. HFD breast milk contains significantly lower levels of total protein when compared to CTR ( CTR; n = 13, HFD; n = 17, *P<.05 versus CTR, Student's t-test).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3045408&req=5

pone-0017261-g004: Maternal breast milk insulin and protein.Analysis of insulin (A) and total protein levels (B) in breast milk from macaque dams in CTR (white bars) and HFD (black bars) maternal diet groups. A. Insulin was assayed by a commercially available primate RIA kit. HFD dams have significantly higher levels of insulin in their breast milk than CTR dams ( CTR; n = 11, HFD; n = 17, **P<.01 versus CTR, Wilcoxon rank sum test). B. Macaque breast milk total protein levels were measured from the aqueous layer using a BCA™ Protein Assay kit across CTR (white bars) and HFD (black bars) maternal diet groups. HFD breast milk contains significantly lower levels of total protein when compared to CTR ( CTR; n = 13, HFD; n = 17, *P<.05 versus CTR, Student's t-test).

Mentions: To further characterize the effects that maternal HFD had on breast milk, we performed radio-immunoassays for insulin and leptin. We found that insulin levels in maternal breast milk are significantly higher (2-fold) in HFD mothers versus CTR (Figure 4A). We found no changes in the levels of leptin in maternal breast milk between CTR and HFD, although the levels were quite low in both groups (data not shown). We also found no differences in the levels of the inflammatory cytokine IL-1β between CTR and HFD breast milk (data not shown). Total protein levels in HFD breast milk are significantly lower than in the CTR breast milk (Figure 4B).


Maternal high fat diet is associated with decreased plasma n-3 fatty acids and fetal hepatic apoptosis in nonhuman primates.

Grant WF, Gillingham MB, Batra AK, Fewkes NM, Comstock SM, Takahashi D, Braun TP, Grove KL, Friedman JE, Marks DL - PLoS ONE (2011)

Maternal breast milk insulin and protein.Analysis of insulin (A) and total protein levels (B) in breast milk from macaque dams in CTR (white bars) and HFD (black bars) maternal diet groups. A. Insulin was assayed by a commercially available primate RIA kit. HFD dams have significantly higher levels of insulin in their breast milk than CTR dams ( CTR; n = 11, HFD; n = 17, **P<.01 versus CTR, Wilcoxon rank sum test). B. Macaque breast milk total protein levels were measured from the aqueous layer using a BCA™ Protein Assay kit across CTR (white bars) and HFD (black bars) maternal diet groups. HFD breast milk contains significantly lower levels of total protein when compared to CTR ( CTR; n = 13, HFD; n = 17, *P<.05 versus CTR, Student's t-test).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3045408&req=5

pone-0017261-g004: Maternal breast milk insulin and protein.Analysis of insulin (A) and total protein levels (B) in breast milk from macaque dams in CTR (white bars) and HFD (black bars) maternal diet groups. A. Insulin was assayed by a commercially available primate RIA kit. HFD dams have significantly higher levels of insulin in their breast milk than CTR dams ( CTR; n = 11, HFD; n = 17, **P<.01 versus CTR, Wilcoxon rank sum test). B. Macaque breast milk total protein levels were measured from the aqueous layer using a BCA™ Protein Assay kit across CTR (white bars) and HFD (black bars) maternal diet groups. HFD breast milk contains significantly lower levels of total protein when compared to CTR ( CTR; n = 13, HFD; n = 17, *P<.05 versus CTR, Student's t-test).
Mentions: To further characterize the effects that maternal HFD had on breast milk, we performed radio-immunoassays for insulin and leptin. We found that insulin levels in maternal breast milk are significantly higher (2-fold) in HFD mothers versus CTR (Figure 4A). We found no changes in the levels of leptin in maternal breast milk between CTR and HFD, although the levels were quite low in both groups (data not shown). We also found no differences in the levels of the inflammatory cytokine IL-1β between CTR and HFD breast milk (data not shown). Total protein levels in HFD breast milk are significantly lower than in the CTR breast milk (Figure 4B).

Bottom Line: To begin to understand the contributions of maternal obesity and over-nutrition to human development and the early origins of obesity, we utilized a non-human primate model to investigate the effects of maternal high-fat feeding and obesity on breast milk, maternal and fetal plasma fatty acid composition and fetal hepatic development.Furthermore, the HFD fetal plasma n-6:n-3 ratio was elevated and was significantly correlated to the maternal plasma n-6:n-3 ratio and maternal hyperinsulinemia.This study links chronic maternal consumption of a HFD with fetal hepatic apoptosis and suggests that a potentially pathological maternal fatty acid milieu is replicated in the developing fetal circulation in the nonhuman primate.

View Article: PubMed Central - PubMed

Affiliation: Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon, United States of America.

ABSTRACT
To begin to understand the contributions of maternal obesity and over-nutrition to human development and the early origins of obesity, we utilized a non-human primate model to investigate the effects of maternal high-fat feeding and obesity on breast milk, maternal and fetal plasma fatty acid composition and fetal hepatic development. While the high-fat diet (HFD) contained equivalent levels of n-3 fatty acids (FA's) and higher levels of n-6 FA's than the control diet (CTR), we found significant decreases in docosahexaenoic acid (DHA) and total n-3 FA's in HFD maternal and fetal plasma. Furthermore, the HFD fetal plasma n-6:n-3 ratio was elevated and was significantly correlated to the maternal plasma n-6:n-3 ratio and maternal hyperinsulinemia. Hepatic apoptosis was also increased in the HFD fetal liver. Switching HFD females to a CTR diet during a subsequent pregnancy normalized fetal DHA, n-3 FA's and fetal hepatic apoptosis to CTR levels. Breast milk from HFD dams contained lower levels of eicosopentanoic acid (EPA) and DHA and lower levels of total protein than CTR breast milk. This study links chronic maternal consumption of a HFD with fetal hepatic apoptosis and suggests that a potentially pathological maternal fatty acid milieu is replicated in the developing fetal circulation in the nonhuman primate.

Show MeSH
Related in: MedlinePlus