Limits...
Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells.

Regassa A, Rings F, Hoelker M, Cinar U, Tholen E, Looft C, Schellander K, Tesfaye D - BMC Genomics (2011)

Bottom Line: Similarly, 566 transcripts are differentially expressed when CCs mature with (CCs+OO) or without (CCs-OO) their enclosed oocytes.Similarly, while transcripts over expressed in OO+CCs are involved in carbohydrate metabolism (ACO1, 2), molecular transport (GAPDH, GFPT1) and nucleic acid metabolism (CBS, NOS2), those over expressed in CCs+ OO are involved in cellular growth and proliferation (FOS, GADD45A), cell cycle (HAS2, VEGFA), cellular development (AMD1, AURKA, DPP4) and gene expression (FOSB, TGFB2).In conclusion, this study has generated large scale gene expression data from different oocyte and CCs samples that would provide insights into gene functions and interactions within and across different pathways that are involved in the maturation of bovine oocytes.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Germany.

ABSTRACT

Background: The bi-directional communication between the oocyte and its companion cumulus cells (CCs) is crucial for development and functions of both cell types. Transcripts that are exclusively expressed either in oocytes or CCs and molecular mechanisms affected due to removal of the communication axis between the two cell types is not investigated at a larger scale. The main objectives of this study were: 1. To identify transcripts exclusively expressed either in oocyte or CCs and 2. To identify those which are differentially expressed when the oocyte is cultured with or without its companion CCs and vice versa.

Results: We analyzed transcriptome profile of different oocyte and CC samples using Affymetrix GeneChip Bovine Genome array containing 23000 transcripts. Out of 13162 genes detected in germinal vesicle (GV) oocytes and their companion CCs, 1516 and 2727 are exclusively expressed in oocytes and CCs, respectively, while 8919 are expressed in both. Similarly, of 13602 genes detected in metaphase II (MII) oocytes and CCs, 1423 and 3100 are exclusively expressed in oocytes and CCs, respectively, while 9079 are expressed in both. A total of 265 transcripts are differentially expressed between oocytes cultured with (OO+CCs) and without (OO-CCs) CCs, of which 217 and 48 are over expressed in the former and the later groups, respectively. Similarly, 566 transcripts are differentially expressed when CCs mature with (CCs+OO) or without (CCs-OO) their enclosed oocytes. Of these, 320 and 246 are over expressed in CCs+OO and CCs-OO, respectively.While oocyte specific transcripts include those involved in transcription (IRF6, POU5F1, MYF5, MED18), translation (EIF2AK1, EIF4ENIF1) and CCs specific ones include those involved in carbohydrate metabolism (HYAL1, PFKL, PYGL, MPI), protein metabolic processes (IHH, APOA1, PLOD1), steroid biosynthetic process (APOA1, CYP11A1, HSD3B1, HSD3B7). Similarly, while transcripts over expressed in OO+CCs are involved in carbohydrate metabolism (ACO1, 2), molecular transport (GAPDH, GFPT1) and nucleic acid metabolism (CBS, NOS2), those over expressed in CCs+ OO are involved in cellular growth and proliferation (FOS, GADD45A), cell cycle (HAS2, VEGFA), cellular development (AMD1, AURKA, DPP4) and gene expression (FOSB, TGFB2).

Conclusion: In conclusion, this study has generated large scale gene expression data from different oocyte and CCs samples that would provide insights into gene functions and interactions within and across different pathways that are involved in the maturation of bovine oocytes. Moreover, the presence or absence of oocyte and CC factors during bovine oocyte maturation can have a profound effect on transcript abundance of each cell types, thereby showing the prevailing molecular cross-talk between oocytes and their corresponding CCs.

Show MeSH

Related in: MedlinePlus

Hierarchical clustering and heat map of the top differentially expressed genes between CCs cultured with (red bar) or without (green bar) their enclosed oocytes with a fold change of more than 16. Abbreviations, CCs + OO and CCs - OO stand for cumulus cells cultured with or without ooplasm, respectively. Numbers (1, 2 and 3) indicate the three biological replicates that were used for microarray hybridization.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3045333&req=5

Figure 7: Hierarchical clustering and heat map of the top differentially expressed genes between CCs cultured with (red bar) or without (green bar) their enclosed oocytes with a fold change of more than 16. Abbreviations, CCs + OO and CCs - OO stand for cumulus cells cultured with or without ooplasm, respectively. Numbers (1, 2 and 3) indicate the three biological replicates that were used for microarray hybridization.

Mentions: Similarly, 566 genes are differentially expressed between CCs that were cultured with (CCs + OO) (number 7) or without their enclosed oocytes (CCs - OO) (number 8) of which 320 and 246 are over expressed in CCs + OO and CCs - OO, respectively (Additional file 13). Hierarchical clustering and heat map of the top differentially expressed genes between OO + CCs and OO - CCs and between CCs + OO and CCs - OO, with a fold change of > 4 and 16, are presented in Figures 6 and 7, respectively.


Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells.

Regassa A, Rings F, Hoelker M, Cinar U, Tholen E, Looft C, Schellander K, Tesfaye D - BMC Genomics (2011)

Hierarchical clustering and heat map of the top differentially expressed genes between CCs cultured with (red bar) or without (green bar) their enclosed oocytes with a fold change of more than 16. Abbreviations, CCs + OO and CCs - OO stand for cumulus cells cultured with or without ooplasm, respectively. Numbers (1, 2 and 3) indicate the three biological replicates that were used for microarray hybridization.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3045333&req=5

Figure 7: Hierarchical clustering and heat map of the top differentially expressed genes between CCs cultured with (red bar) or without (green bar) their enclosed oocytes with a fold change of more than 16. Abbreviations, CCs + OO and CCs - OO stand for cumulus cells cultured with or without ooplasm, respectively. Numbers (1, 2 and 3) indicate the three biological replicates that were used for microarray hybridization.
Mentions: Similarly, 566 genes are differentially expressed between CCs that were cultured with (CCs + OO) (number 7) or without their enclosed oocytes (CCs - OO) (number 8) of which 320 and 246 are over expressed in CCs + OO and CCs - OO, respectively (Additional file 13). Hierarchical clustering and heat map of the top differentially expressed genes between OO + CCs and OO - CCs and between CCs + OO and CCs - OO, with a fold change of > 4 and 16, are presented in Figures 6 and 7, respectively.

Bottom Line: Similarly, 566 transcripts are differentially expressed when CCs mature with (CCs+OO) or without (CCs-OO) their enclosed oocytes.Similarly, while transcripts over expressed in OO+CCs are involved in carbohydrate metabolism (ACO1, 2), molecular transport (GAPDH, GFPT1) and nucleic acid metabolism (CBS, NOS2), those over expressed in CCs+ OO are involved in cellular growth and proliferation (FOS, GADD45A), cell cycle (HAS2, VEGFA), cellular development (AMD1, AURKA, DPP4) and gene expression (FOSB, TGFB2).In conclusion, this study has generated large scale gene expression data from different oocyte and CCs samples that would provide insights into gene functions and interactions within and across different pathways that are involved in the maturation of bovine oocytes.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Germany.

ABSTRACT

Background: The bi-directional communication between the oocyte and its companion cumulus cells (CCs) is crucial for development and functions of both cell types. Transcripts that are exclusively expressed either in oocytes or CCs and molecular mechanisms affected due to removal of the communication axis between the two cell types is not investigated at a larger scale. The main objectives of this study were: 1. To identify transcripts exclusively expressed either in oocyte or CCs and 2. To identify those which are differentially expressed when the oocyte is cultured with or without its companion CCs and vice versa.

Results: We analyzed transcriptome profile of different oocyte and CC samples using Affymetrix GeneChip Bovine Genome array containing 23000 transcripts. Out of 13162 genes detected in germinal vesicle (GV) oocytes and their companion CCs, 1516 and 2727 are exclusively expressed in oocytes and CCs, respectively, while 8919 are expressed in both. Similarly, of 13602 genes detected in metaphase II (MII) oocytes and CCs, 1423 and 3100 are exclusively expressed in oocytes and CCs, respectively, while 9079 are expressed in both. A total of 265 transcripts are differentially expressed between oocytes cultured with (OO+CCs) and without (OO-CCs) CCs, of which 217 and 48 are over expressed in the former and the later groups, respectively. Similarly, 566 transcripts are differentially expressed when CCs mature with (CCs+OO) or without (CCs-OO) their enclosed oocytes. Of these, 320 and 246 are over expressed in CCs+OO and CCs-OO, respectively.While oocyte specific transcripts include those involved in transcription (IRF6, POU5F1, MYF5, MED18), translation (EIF2AK1, EIF4ENIF1) and CCs specific ones include those involved in carbohydrate metabolism (HYAL1, PFKL, PYGL, MPI), protein metabolic processes (IHH, APOA1, PLOD1), steroid biosynthetic process (APOA1, CYP11A1, HSD3B1, HSD3B7). Similarly, while transcripts over expressed in OO+CCs are involved in carbohydrate metabolism (ACO1, 2), molecular transport (GAPDH, GFPT1) and nucleic acid metabolism (CBS, NOS2), those over expressed in CCs+ OO are involved in cellular growth and proliferation (FOS, GADD45A), cell cycle (HAS2, VEGFA), cellular development (AMD1, AURKA, DPP4) and gene expression (FOSB, TGFB2).

Conclusion: In conclusion, this study has generated large scale gene expression data from different oocyte and CCs samples that would provide insights into gene functions and interactions within and across different pathways that are involved in the maturation of bovine oocytes. Moreover, the presence or absence of oocyte and CC factors during bovine oocyte maturation can have a profound effect on transcript abundance of each cell types, thereby showing the prevailing molecular cross-talk between oocytes and their corresponding CCs.

Show MeSH
Related in: MedlinePlus