Limits...
Mopeia virus-related arenavirus in natal multimammate mice, Morogoro, Tanzania.

Günther S, Hoofd G, Charrel R, Röser C, Becker-Ziaja B, Lloyd G, Sabuni C, Verhagen R, van der Groen G, Kennis J, Katakweba A, Machang'u R, Makundi R, Leirs H - Emerging Infect. Dis. (2009)

Bottom Line: A serosurvey involving 2,520 small mammals from Tanzania identified a hot spot of arenavirus circulation in Morogoro.Molecular screening detected a new arenavirus in Natal multimammate mice (Mastomys natalensis), Morogoro virus, related to Mopeia virus.Only a small percentage of mice carry Morogoro virus, although a large proportion shows specific antibodies.

View Article: PubMed Central - PubMed

Affiliation: Bernhard-Nocht-Institute for Tropical Medicine Department of Virology, Bernhard-Nocht-Str 74, 20359 Hamburg, Germany. guenther@bni.uni-hamburg.de

ABSTRACT
A serosurvey involving 2,520 small mammals from Tanzania identified a hot spot of arenavirus circulation in Morogoro. Molecular screening detected a new arenavirus in Natal multimammate mice (Mastomys natalensis), Morogoro virus, related to Mopeia virus. Only a small percentage of mice carry Morogoro virus, although a large proportion shows specific antibodies.

Show MeSH

Related in: MedlinePlus

Phylogenetic tree and molecular clock of Morogoro virus based on partial large gene sequences of 17 strains (340 nucleotides; GenBank accession nos. EU914104 and EU914107–EU914122). Phylogeny was inferred with the BEAST v1.4.8 package (11) under assumption of a relaxed lognormal molecular clock and general time reversible substitution model with gamma-distributed substitution rate variation among sites. Branches with posterior probability <0.5 were collapsed. The substitution rate per site and year is indicated for each branch. Node ages and rates are median values. Variation in rates among branches is low as calculated with Tracer program (beast.bio.ed.ac.uk/Tracer) indicating a molecular clock in the evolution of Morogoro virus. The same tree topology with similar substitution rates was obtained when assuming the Hasegawa-Kishino-Yano substitution model (not shown).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3044542&req=5

Figure 2: Phylogenetic tree and molecular clock of Morogoro virus based on partial large gene sequences of 17 strains (340 nucleotides; GenBank accession nos. EU914104 and EU914107–EU914122). Phylogeny was inferred with the BEAST v1.4.8 package (11) under assumption of a relaxed lognormal molecular clock and general time reversible substitution model with gamma-distributed substitution rate variation among sites. Branches with posterior probability <0.5 were collapsed. The substitution rate per site and year is indicated for each branch. Node ages and rates are median values. Variation in rates among branches is low as calculated with Tracer program (beast.bio.ed.ac.uk/Tracer) indicating a molecular clock in the evolution of Morogoro virus. The same tree topology with similar substitution rates was obtained when assuming the Hasegawa-Kishino-Yano substitution model (not shown).

Mentions: The availability of Morogoro virus L gene sequences from 2004 and 2007, originating from the same host population (trapping sites <1 km apart), provided us with the opportunity to estimate the molecular clock rate for this virus. Phylogenetic reconstruction was performed with the BEAST version 1.4.8 package (http://beast.bio.ed.ac.uk) (11) under the assumption of a relaxed lognormal molecular clock and general time reversible (GTR) or Hasegawa-Kishino-Yano (HKY) substitution model with gamma-distributed substitution rate variation among sites (Figure 2 and data not shown). Analysis was run for 2 million Markov chain Monte Carlo steps, which yielded a reliable set of data as verified with the TRACER program (http://tree.bio.ed.ac.uk/software/tracer). Based on GTR and HYK model, 3.2 × 10–3 and 3.4 × 10–3 substitutions per site and year (95% interval of highest posterior density 1.1–6.6 × 10–3), respectively, were calculated.


Mopeia virus-related arenavirus in natal multimammate mice, Morogoro, Tanzania.

Günther S, Hoofd G, Charrel R, Röser C, Becker-Ziaja B, Lloyd G, Sabuni C, Verhagen R, van der Groen G, Kennis J, Katakweba A, Machang'u R, Makundi R, Leirs H - Emerging Infect. Dis. (2009)

Phylogenetic tree and molecular clock of Morogoro virus based on partial large gene sequences of 17 strains (340 nucleotides; GenBank accession nos. EU914104 and EU914107–EU914122). Phylogeny was inferred with the BEAST v1.4.8 package (11) under assumption of a relaxed lognormal molecular clock and general time reversible substitution model with gamma-distributed substitution rate variation among sites. Branches with posterior probability <0.5 were collapsed. The substitution rate per site and year is indicated for each branch. Node ages and rates are median values. Variation in rates among branches is low as calculated with Tracer program (beast.bio.ed.ac.uk/Tracer) indicating a molecular clock in the evolution of Morogoro virus. The same tree topology with similar substitution rates was obtained when assuming the Hasegawa-Kishino-Yano substitution model (not shown).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3044542&req=5

Figure 2: Phylogenetic tree and molecular clock of Morogoro virus based on partial large gene sequences of 17 strains (340 nucleotides; GenBank accession nos. EU914104 and EU914107–EU914122). Phylogeny was inferred with the BEAST v1.4.8 package (11) under assumption of a relaxed lognormal molecular clock and general time reversible substitution model with gamma-distributed substitution rate variation among sites. Branches with posterior probability <0.5 were collapsed. The substitution rate per site and year is indicated for each branch. Node ages and rates are median values. Variation in rates among branches is low as calculated with Tracer program (beast.bio.ed.ac.uk/Tracer) indicating a molecular clock in the evolution of Morogoro virus. The same tree topology with similar substitution rates was obtained when assuming the Hasegawa-Kishino-Yano substitution model (not shown).
Mentions: The availability of Morogoro virus L gene sequences from 2004 and 2007, originating from the same host population (trapping sites <1 km apart), provided us with the opportunity to estimate the molecular clock rate for this virus. Phylogenetic reconstruction was performed with the BEAST version 1.4.8 package (http://beast.bio.ed.ac.uk) (11) under the assumption of a relaxed lognormal molecular clock and general time reversible (GTR) or Hasegawa-Kishino-Yano (HKY) substitution model with gamma-distributed substitution rate variation among sites (Figure 2 and data not shown). Analysis was run for 2 million Markov chain Monte Carlo steps, which yielded a reliable set of data as verified with the TRACER program (http://tree.bio.ed.ac.uk/software/tracer). Based on GTR and HYK model, 3.2 × 10–3 and 3.4 × 10–3 substitutions per site and year (95% interval of highest posterior density 1.1–6.6 × 10–3), respectively, were calculated.

Bottom Line: A serosurvey involving 2,520 small mammals from Tanzania identified a hot spot of arenavirus circulation in Morogoro.Molecular screening detected a new arenavirus in Natal multimammate mice (Mastomys natalensis), Morogoro virus, related to Mopeia virus.Only a small percentage of mice carry Morogoro virus, although a large proportion shows specific antibodies.

View Article: PubMed Central - PubMed

Affiliation: Bernhard-Nocht-Institute for Tropical Medicine Department of Virology, Bernhard-Nocht-Str 74, 20359 Hamburg, Germany. guenther@bni.uni-hamburg.de

ABSTRACT
A serosurvey involving 2,520 small mammals from Tanzania identified a hot spot of arenavirus circulation in Morogoro. Molecular screening detected a new arenavirus in Natal multimammate mice (Mastomys natalensis), Morogoro virus, related to Mopeia virus. Only a small percentage of mice carry Morogoro virus, although a large proportion shows specific antibodies.

Show MeSH
Related in: MedlinePlus