Limits...
Cell sheet engineering: solvent effect on nanometric grafting of poly-N-isopropylacrylamide onto polystyrene substrate under ultraviolet radiation.

Biazar E, Khorasani M, Daliri M - Int J Nanomedicine (2011)

Bottom Line: Thermoresponsive polymers were grafted to dishes covalently, which allowed epithelial cells to attach and proliferate at 37°C.The cells were also detached spontaneously without using enzymes when the temperature dropped below 4°C.MTT analysis also showed good viability of cells on the grafted samples, suggesting that this type of grafted material had potential as a biomaterial for cell sheet engineering.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran. kia_esm@yahoo.com

ABSTRACT

Background: The best solvent type and ratio for grafting of poly-n-isopropylacrylamide (PNIPAAm) on the surface of polystyrene is obtained under ultraviolet radiation. In this study, the effects of solvents, such as water, methanol, and their combinations, under ultraviolet radiation were investigated successfully.

Method and results: Attenuated total reflection Fourier transform infrared analysis showed the existence of the graft PNIPAAm on the substrate for all samples resolved in solvents. The best solvent ratio and NIPAAm concentration for grafting was obtained with 40% NIPAAm concentrations resolved in a solvent of 9:1 (v/v) water/methanol (120%). Scanning electron microscopic and atomic force microscopic images clearly showed that a 10% increase of methanol to water would increase the amount of grafting. Surface topography and graft thickness in atomic force microscopic images of the grafted samples showed that the thickness of these grafts was about 600 nm. The drop water contact angles of the best grafted sample at 37°C and 4°C were 43.3° and 60.4°, respectively, which demonstrated the hydrophilicity and hydrophobicity of the grafted surfaces. Differential scanning calorimetric analysis also revealed the low critical solution temperature of the grafted sample to be 32°C. Thermoresponsive polymers were grafted to dishes covalently, which allowed epithelial cells to attach and proliferate at 37°C. The cells were also detached spontaneously without using enzymes when the temperature dropped below 4°C.

Conclusion: MTT analysis also showed good viability of cells on the grafted samples, suggesting that this type of grafted material had potential as a biomaterial for cell sheet engineering.

Show MeSH

Related in: MedlinePlus

A) Grafting percentage of n-isopropylacrylamide onto polystyrene with two different solvents and B) Effect of n-isopropylacrylamide concentration on grafting in 9:1 (v/v) water/methanol solvent.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3044182&req=5

f1-ijn-6-295: A) Grafting percentage of n-isopropylacrylamide onto polystyrene with two different solvents and B) Effect of n-isopropylacrylamide concentration on grafting in 9:1 (v/v) water/methanol solvent.

Mentions: The grafted polystyrene samples with the different solvents under ultraviolet radiation were weighed at a constant temperature. Table 1 and Figure 1A show that there was almost no grafting of samples using 100% solvents without water. More grafting is obtained with a methanol/water solvent of 10% (v/v). Table 2 and Figure 1B show an increase in grafting with increased NIPAAm concentration in a methanol/water solvent of 10% (v/v). The peaks around 20% (g/v) and 40% (g/v) were probably due to the Trommsdorff effect. The small peak around 20% might be attributed to water, while the large one around 40% would be attributable to methanol.


Cell sheet engineering: solvent effect on nanometric grafting of poly-N-isopropylacrylamide onto polystyrene substrate under ultraviolet radiation.

Biazar E, Khorasani M, Daliri M - Int J Nanomedicine (2011)

A) Grafting percentage of n-isopropylacrylamide onto polystyrene with two different solvents and B) Effect of n-isopropylacrylamide concentration on grafting in 9:1 (v/v) water/methanol solvent.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3044182&req=5

f1-ijn-6-295: A) Grafting percentage of n-isopropylacrylamide onto polystyrene with two different solvents and B) Effect of n-isopropylacrylamide concentration on grafting in 9:1 (v/v) water/methanol solvent.
Mentions: The grafted polystyrene samples with the different solvents under ultraviolet radiation were weighed at a constant temperature. Table 1 and Figure 1A show that there was almost no grafting of samples using 100% solvents without water. More grafting is obtained with a methanol/water solvent of 10% (v/v). Table 2 and Figure 1B show an increase in grafting with increased NIPAAm concentration in a methanol/water solvent of 10% (v/v). The peaks around 20% (g/v) and 40% (g/v) were probably due to the Trommsdorff effect. The small peak around 20% might be attributed to water, while the large one around 40% would be attributable to methanol.

Bottom Line: Thermoresponsive polymers were grafted to dishes covalently, which allowed epithelial cells to attach and proliferate at 37°C.The cells were also detached spontaneously without using enzymes when the temperature dropped below 4°C.MTT analysis also showed good viability of cells on the grafted samples, suggesting that this type of grafted material had potential as a biomaterial for cell sheet engineering.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran. kia_esm@yahoo.com

ABSTRACT

Background: The best solvent type and ratio for grafting of poly-n-isopropylacrylamide (PNIPAAm) on the surface of polystyrene is obtained under ultraviolet radiation. In this study, the effects of solvents, such as water, methanol, and their combinations, under ultraviolet radiation were investigated successfully.

Method and results: Attenuated total reflection Fourier transform infrared analysis showed the existence of the graft PNIPAAm on the substrate for all samples resolved in solvents. The best solvent ratio and NIPAAm concentration for grafting was obtained with 40% NIPAAm concentrations resolved in a solvent of 9:1 (v/v) water/methanol (120%). Scanning electron microscopic and atomic force microscopic images clearly showed that a 10% increase of methanol to water would increase the amount of grafting. Surface topography and graft thickness in atomic force microscopic images of the grafted samples showed that the thickness of these grafts was about 600 nm. The drop water contact angles of the best grafted sample at 37°C and 4°C were 43.3° and 60.4°, respectively, which demonstrated the hydrophilicity and hydrophobicity of the grafted surfaces. Differential scanning calorimetric analysis also revealed the low critical solution temperature of the grafted sample to be 32°C. Thermoresponsive polymers were grafted to dishes covalently, which allowed epithelial cells to attach and proliferate at 37°C. The cells were also detached spontaneously without using enzymes when the temperature dropped below 4°C.

Conclusion: MTT analysis also showed good viability of cells on the grafted samples, suggesting that this type of grafted material had potential as a biomaterial for cell sheet engineering.

Show MeSH
Related in: MedlinePlus