Limits...
Clinically translatable cell tracking and quantification by MRI in cartilage repair using superparamagnetic iron oxides.

van Buul GM, Kotek G, Wielopolski PA, Farrell E, Bos PK, Weinans H, Grohnert AU, Jahr H, Verhaar JA, Krestin GP, van Osch GJ, Bernsen MR - PLoS ONE (2011)

Bottom Line: Efficacy and various safety aspects of SPIO cell labeling were determined using appropriate assays.SPIO labeling appears to be safe without influencing cell behavior.SPIO labeled cells can be visualized in an intra-articular environment and quantified when seeded in cartilage defects.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiology, Erasmus MC, Rotterdam, The Netherlands.

ABSTRACT

Background: Articular cartilage has very limited intrinsic regenerative capacity, making cell-based therapy a tempting approach for cartilage repair. Cell tracking can be a major step towards unraveling and improving the repair process of these therapies. We studied superparamagnetic iron oxides (SPIO) for labeling human bone marrow-derived mesenchymal stem cells (hBMSCs) regarding effectivity, cell viability, long term metabolic cell activity, chondrogenic differentiation and hBMSC secretion profile. We additionally examined the capacity of synovial cells to endocytose SPIO from dead, labeled cells, together with the use of magnetic resonance imaging (MRI) for intra-articular visualization and quantification of SPIO labeled cells.

Methodology/prinicipal findings: Efficacy and various safety aspects of SPIO cell labeling were determined using appropriate assays. Synovial SPIO re-uptake was investigated in vitro by co-labeling cells with SPIO and green fluorescent protein (GFP). MRI experiments were performed on a clinical 3.0T MRI scanner. Two cell-based cartilage repair techniques were mimicked for evaluating MRI traceability of labeled cells: intra-articular cell injection and cell implantation in cartilage defects. Cells were applied ex vivo or in vitro in an intra-articular environment and immediately scanned. SPIO labeling was effective and did not impair any of the studied safety aspects, including hBMSC secretion profile. SPIO from dead, labeled cells could be taken up by synovial cells. Both injected and implanted SPIO-labeled cells could accurately be visualized by MRI in a clinically relevant sized joint model using clinically applied cell doses. Finally, we quantified the amount of labeled cells seeded in cartilage defects using MR-based relaxometry.

Conclusions: SPIO labeling appears to be safe without influencing cell behavior. SPIO labeled cells can be visualized in an intra-articular environment and quantified when seeded in cartilage defects.

Show MeSH
Labeling human Bone Marrow stroma-derived mesenchymal Stem Cells (hBMSCs) using Superparamagnetic Iron Oxides (SPIO).Perl's iron stain showing effective endocytosis of SPIO (A), leading to labeling efficiencies of approximately 95% (B) and a total iron load of approximately 20 pg/cell (C). SPIO labeling did not impair cell viability (D) or subsequent metabolic cell activity (E) at any dose used. Results shown for triplicate samples from three hBMSC donors.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3044153&req=5

pone-0017001-g001: Labeling human Bone Marrow stroma-derived mesenchymal Stem Cells (hBMSCs) using Superparamagnetic Iron Oxides (SPIO).Perl's iron stain showing effective endocytosis of SPIO (A), leading to labeling efficiencies of approximately 95% (B) and a total iron load of approximately 20 pg/cell (C). SPIO labeling did not impair cell viability (D) or subsequent metabolic cell activity (E) at any dose used. Results shown for triplicate samples from three hBMSC donors.

Mentions: hBMSCs were efficiently labeled with ferumoxides-protamine sulfate complexes (Figure 1A). We observed a labeling efficiency ranging from 41.2±33.5% at an SPIO dose of 2.5 µg/cm2 to 94.5±7.8% at an SPIO dose of 25 µg/cm2 (Figure 1B) with resulting average total iron loads (TILs) of cells ranging from 4.0±2.9 pg/cell to 19.5±6.1 pg/cell (Figure 1C). Both labeling efficiency and TIL increased in relation to SPIO labeling dose up to a dose of 10 µg/cm2. The higher SPIO dose of 25 µg/cm2 did not significantly increase labeling efficiency (P = 0.42) or average TIL (P = 0.50). hBMSC viability was not influenced by SPIO labeling for dosages up to 25 µg/cm2 (Figure 1D). Additionally, SPIO labeling did not inhibit cell metabolic activity compared to unlabeled controls for at least seven days (Figure 1E). Based on these results an SPIO dose of 10 µg/cm2, corresponding to a final labeling concentration of 50 µg/ml SPIO, was considered optimal and used in all further experiments.


Clinically translatable cell tracking and quantification by MRI in cartilage repair using superparamagnetic iron oxides.

van Buul GM, Kotek G, Wielopolski PA, Farrell E, Bos PK, Weinans H, Grohnert AU, Jahr H, Verhaar JA, Krestin GP, van Osch GJ, Bernsen MR - PLoS ONE (2011)

Labeling human Bone Marrow stroma-derived mesenchymal Stem Cells (hBMSCs) using Superparamagnetic Iron Oxides (SPIO).Perl's iron stain showing effective endocytosis of SPIO (A), leading to labeling efficiencies of approximately 95% (B) and a total iron load of approximately 20 pg/cell (C). SPIO labeling did not impair cell viability (D) or subsequent metabolic cell activity (E) at any dose used. Results shown for triplicate samples from three hBMSC donors.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3044153&req=5

pone-0017001-g001: Labeling human Bone Marrow stroma-derived mesenchymal Stem Cells (hBMSCs) using Superparamagnetic Iron Oxides (SPIO).Perl's iron stain showing effective endocytosis of SPIO (A), leading to labeling efficiencies of approximately 95% (B) and a total iron load of approximately 20 pg/cell (C). SPIO labeling did not impair cell viability (D) or subsequent metabolic cell activity (E) at any dose used. Results shown for triplicate samples from three hBMSC donors.
Mentions: hBMSCs were efficiently labeled with ferumoxides-protamine sulfate complexes (Figure 1A). We observed a labeling efficiency ranging from 41.2±33.5% at an SPIO dose of 2.5 µg/cm2 to 94.5±7.8% at an SPIO dose of 25 µg/cm2 (Figure 1B) with resulting average total iron loads (TILs) of cells ranging from 4.0±2.9 pg/cell to 19.5±6.1 pg/cell (Figure 1C). Both labeling efficiency and TIL increased in relation to SPIO labeling dose up to a dose of 10 µg/cm2. The higher SPIO dose of 25 µg/cm2 did not significantly increase labeling efficiency (P = 0.42) or average TIL (P = 0.50). hBMSC viability was not influenced by SPIO labeling for dosages up to 25 µg/cm2 (Figure 1D). Additionally, SPIO labeling did not inhibit cell metabolic activity compared to unlabeled controls for at least seven days (Figure 1E). Based on these results an SPIO dose of 10 µg/cm2, corresponding to a final labeling concentration of 50 µg/ml SPIO, was considered optimal and used in all further experiments.

Bottom Line: Efficacy and various safety aspects of SPIO cell labeling were determined using appropriate assays.SPIO labeling appears to be safe without influencing cell behavior.SPIO labeled cells can be visualized in an intra-articular environment and quantified when seeded in cartilage defects.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiology, Erasmus MC, Rotterdam, The Netherlands.

ABSTRACT

Background: Articular cartilage has very limited intrinsic regenerative capacity, making cell-based therapy a tempting approach for cartilage repair. Cell tracking can be a major step towards unraveling and improving the repair process of these therapies. We studied superparamagnetic iron oxides (SPIO) for labeling human bone marrow-derived mesenchymal stem cells (hBMSCs) regarding effectivity, cell viability, long term metabolic cell activity, chondrogenic differentiation and hBMSC secretion profile. We additionally examined the capacity of synovial cells to endocytose SPIO from dead, labeled cells, together with the use of magnetic resonance imaging (MRI) for intra-articular visualization and quantification of SPIO labeled cells.

Methodology/prinicipal findings: Efficacy and various safety aspects of SPIO cell labeling were determined using appropriate assays. Synovial SPIO re-uptake was investigated in vitro by co-labeling cells with SPIO and green fluorescent protein (GFP). MRI experiments were performed on a clinical 3.0T MRI scanner. Two cell-based cartilage repair techniques were mimicked for evaluating MRI traceability of labeled cells: intra-articular cell injection and cell implantation in cartilage defects. Cells were applied ex vivo or in vitro in an intra-articular environment and immediately scanned. SPIO labeling was effective and did not impair any of the studied safety aspects, including hBMSC secretion profile. SPIO from dead, labeled cells could be taken up by synovial cells. Both injected and implanted SPIO-labeled cells could accurately be visualized by MRI in a clinically relevant sized joint model using clinically applied cell doses. Finally, we quantified the amount of labeled cells seeded in cartilage defects using MR-based relaxometry.

Conclusions: SPIO labeling appears to be safe without influencing cell behavior. SPIO labeled cells can be visualized in an intra-articular environment and quantified when seeded in cartilage defects.

Show MeSH