Limits...
Influence of small caliber coronary arteries on the diagnostic accuracy of adenosine stress cardiac magnetic resonance imaging.

Pilz G, Heer T, Graw M, Ali E, Klos M, Scheck R, Zeymer U, Höfling B - Clin Res Cardiol (2010)

Bottom Line: After adenosine infusion, myocardial first-pass sequence using gadolinium-based contrast agent was performed and compared with rest perfusion.We found a significant association between FP CMR and the presence of a small caliber coronary vessel (proximal diameter < one standard deviation below the mean) supplying the area of ischemia (chi-square 42.6, p < 0.0001).Small caliber coronary arteries found as normal variations in right-dominant or left-dominant circulation may account for hypoperfusion in the absence of coronary stenosis and thus may cause FP adenosine stress CMR results.

View Article: PubMed Central - PubMed

Affiliation: Department of Cardiology, Clinic Agatharied, Academic Teaching Hospital, University of Munich, Norbert-Kerkel-Platz, Hausham, Germany. pilz@khagatharied.de

ABSTRACT

Background and aims: Positive predictive value (PPV) of adenosine stress cardiac magnetic resonance (CMR) for coronary artery disease (CAD) is unsatisfactory. We investigated the impact of coronary caliber variability on this limitation in CMR performance.

Methods and results: 206 consecutive patients with myocardial ischemia during CMR and subsequent coronary angiography (CA) were studied. Patients were examined in a 1.5-T scanner. After adenosine infusion, myocardial first-pass sequence using gadolinium-based contrast agent was performed and compared with rest perfusion. CAD was invasively confirmed in 165 [true positive (TP); PPV, 80.1%] and ruled out in 41 patients [false positive (FP)]. TP and FP were comparable for pre-test risk and CMR findings. We found a significant association between FP CMR and the presence of a small caliber coronary vessel (proximal diameter < one standard deviation below the mean) supplying the area of ischemia (chi-square 42.6, p < 0.0001). A small caliber artery ipsilateral to the ischemic region was a predictive parameter for FP versus TP discrimination (ROC area, 0.84 ± 0.04 vs. 0.59 ± 0.05; p < 0.0001). Further increment in diagnostic accuracy was achieved by including proximal ipsilateral/contralateral coronary diameter ratios (ROC area, 0.90 ± 0.03; p < 0.03).

Conclusions: Small caliber coronary arteries found as normal variations in right-dominant or left-dominant circulation may account for hypoperfusion in the absence of coronary stenosis and thus may cause FP adenosine stress CMR results. Non-invasive assessment of proximal coronary diameters in the vessel supplying the area of ischemia could reduce FP rates, raise the diagnostic accuracy of CMR for CAD and minimize subsequent superfluous CA.

Show MeSH

Related in: MedlinePlus

Comparison of ROC curves for identification of FP patients. Standard CMR parameters alone (see Table 2) (dotted line) versus the combined approach of standard CMR parameters and proximal coronary caliber (Cor cal) information [presence of a small caliber vessel in the area of ischemia (interrupted line), p < 0.0001] versus the combined approach of standard CMR parameters, proximal coronary caliber and ratios of ipsilateral/contralateral coronary diameter (full line, p < 0.03 vs. CMR + Cor cal)
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3040827&req=5

Fig3: Comparison of ROC curves for identification of FP patients. Standard CMR parameters alone (see Table 2) (dotted line) versus the combined approach of standard CMR parameters and proximal coronary caliber (Cor cal) information [presence of a small caliber vessel in the area of ischemia (interrupted line), p < 0.0001] versus the combined approach of standard CMR parameters, proximal coronary caliber and ratios of ipsilateral/contralateral coronary diameter (full line, p < 0.03 vs. CMR + Cor cal)

Mentions: There was no difference between TP and FP patients regarding standard CMR findings (Table 2), which were not discriminatory between TP and FP (ROC curve area 0.58 ± 0.05) (p = 0.10 vs. an AUC of 0.5; Fig. 3). In contrast, logistic regression analysis showed the presence of a small caliber vessel supplying the region of ischemia to be a highly predictive parameter for discrimination of FP versus TP (p < 0.0001). By adding this information to CMR, diagnostic ability to avoid FP improved significantly (ROC curve area 0.84 ± 0.04, p < 0.0001). If the information on the presence of a small caliber coronary vessel supplying the area of maximal ischemia in CMR was included, PPV for CAD raised from 80.1 to 89.6%. An additional increment in diagnostic accuracy was achieved by means of proximal ipsilateral/contralateral diameter ratios (AUC 0.90 ± 0.03, p < 0.03; Fig. 3): a diameter ratio of <0.82 for the coronary vessel supplying the area of maximal ischemia in CMR correctly identified 53.7% of the FP results with a sensitivity of 99.4%.Table 2


Influence of small caliber coronary arteries on the diagnostic accuracy of adenosine stress cardiac magnetic resonance imaging.

Pilz G, Heer T, Graw M, Ali E, Klos M, Scheck R, Zeymer U, Höfling B - Clin Res Cardiol (2010)

Comparison of ROC curves for identification of FP patients. Standard CMR parameters alone (see Table 2) (dotted line) versus the combined approach of standard CMR parameters and proximal coronary caliber (Cor cal) information [presence of a small caliber vessel in the area of ischemia (interrupted line), p < 0.0001] versus the combined approach of standard CMR parameters, proximal coronary caliber and ratios of ipsilateral/contralateral coronary diameter (full line, p < 0.03 vs. CMR + Cor cal)
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3040827&req=5

Fig3: Comparison of ROC curves for identification of FP patients. Standard CMR parameters alone (see Table 2) (dotted line) versus the combined approach of standard CMR parameters and proximal coronary caliber (Cor cal) information [presence of a small caliber vessel in the area of ischemia (interrupted line), p < 0.0001] versus the combined approach of standard CMR parameters, proximal coronary caliber and ratios of ipsilateral/contralateral coronary diameter (full line, p < 0.03 vs. CMR + Cor cal)
Mentions: There was no difference between TP and FP patients regarding standard CMR findings (Table 2), which were not discriminatory between TP and FP (ROC curve area 0.58 ± 0.05) (p = 0.10 vs. an AUC of 0.5; Fig. 3). In contrast, logistic regression analysis showed the presence of a small caliber vessel supplying the region of ischemia to be a highly predictive parameter for discrimination of FP versus TP (p < 0.0001). By adding this information to CMR, diagnostic ability to avoid FP improved significantly (ROC curve area 0.84 ± 0.04, p < 0.0001). If the information on the presence of a small caliber coronary vessel supplying the area of maximal ischemia in CMR was included, PPV for CAD raised from 80.1 to 89.6%. An additional increment in diagnostic accuracy was achieved by means of proximal ipsilateral/contralateral diameter ratios (AUC 0.90 ± 0.03, p < 0.03; Fig. 3): a diameter ratio of <0.82 for the coronary vessel supplying the area of maximal ischemia in CMR correctly identified 53.7% of the FP results with a sensitivity of 99.4%.Table 2

Bottom Line: After adenosine infusion, myocardial first-pass sequence using gadolinium-based contrast agent was performed and compared with rest perfusion.We found a significant association between FP CMR and the presence of a small caliber coronary vessel (proximal diameter < one standard deviation below the mean) supplying the area of ischemia (chi-square 42.6, p < 0.0001).Small caliber coronary arteries found as normal variations in right-dominant or left-dominant circulation may account for hypoperfusion in the absence of coronary stenosis and thus may cause FP adenosine stress CMR results.

View Article: PubMed Central - PubMed

Affiliation: Department of Cardiology, Clinic Agatharied, Academic Teaching Hospital, University of Munich, Norbert-Kerkel-Platz, Hausham, Germany. pilz@khagatharied.de

ABSTRACT

Background and aims: Positive predictive value (PPV) of adenosine stress cardiac magnetic resonance (CMR) for coronary artery disease (CAD) is unsatisfactory. We investigated the impact of coronary caliber variability on this limitation in CMR performance.

Methods and results: 206 consecutive patients with myocardial ischemia during CMR and subsequent coronary angiography (CA) were studied. Patients were examined in a 1.5-T scanner. After adenosine infusion, myocardial first-pass sequence using gadolinium-based contrast agent was performed and compared with rest perfusion. CAD was invasively confirmed in 165 [true positive (TP); PPV, 80.1%] and ruled out in 41 patients [false positive (FP)]. TP and FP were comparable for pre-test risk and CMR findings. We found a significant association between FP CMR and the presence of a small caliber coronary vessel (proximal diameter < one standard deviation below the mean) supplying the area of ischemia (chi-square 42.6, p < 0.0001). A small caliber artery ipsilateral to the ischemic region was a predictive parameter for FP versus TP discrimination (ROC area, 0.84 ± 0.04 vs. 0.59 ± 0.05; p < 0.0001). Further increment in diagnostic accuracy was achieved by including proximal ipsilateral/contralateral coronary diameter ratios (ROC area, 0.90 ± 0.03; p < 0.03).

Conclusions: Small caliber coronary arteries found as normal variations in right-dominant or left-dominant circulation may account for hypoperfusion in the absence of coronary stenosis and thus may cause FP adenosine stress CMR results. Non-invasive assessment of proximal coronary diameters in the vessel supplying the area of ischemia could reduce FP rates, raise the diagnostic accuracy of CMR for CAD and minimize subsequent superfluous CA.

Show MeSH
Related in: MedlinePlus