Limits...
A multi-functional synthetic gene network: a frequency multiplier, oscillator and switch.

Purcell O, di Bernardo M, Grierson CS, Savery NJ - PLoS ONE (2011)

Bottom Line: Analysis of the bifurcation structure also reveals novel, programmable multi-functionality; in addition to functioning as a frequency multiplier, the network is able to function as a switch or an oscillator, depending on the temporal nature of the input.Multi-functionality is often observed in neuronal networks, where it is suggested to allow for the efficient coordination of different responses.This network represents a significant theoretical addition that extends the capabilities of synthetic gene networks.

View Article: PubMed Central - PubMed

Affiliation: Department of Engineering Mathematics, Bristol Centre for Complexity Sciences, University of Bristol, Bristol, United Kingdom. enoep@bristol.ac.uk

ABSTRACT
We present the design and analysis of a synthetic gene network that performs frequency multiplication. It takes oscillatory transcription factor concentrations, such as those produced from the currently available genetic oscillators, as an input, and produces oscillations with half the input frequency as an output. Analysis of the bifurcation structure also reveals novel, programmable multi-functionality; in addition to functioning as a frequency multiplier, the network is able to function as a switch or an oscillator, depending on the temporal nature of the input. Multi-functionality is often observed in neuronal networks, where it is suggested to allow for the efficient coordination of different responses. This network represents a significant theoretical addition that extends the capabilities of synthetic gene networks.

Show MeSH
A discrete view of the frequency multiplier behaviour.The dynamics can be split into four stages, starting at stage 1 and cycling round clockwise. As the level of input switches on and off twice, each of the repressors has only made one oscillation. The network therefore functions as a frequency multiplier of one half. See main text for an explanation of the network state at each stage.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3040778&req=5

pone-0016140-g002: A discrete view of the frequency multiplier behaviour.The dynamics can be split into four stages, starting at stage 1 and cycling round clockwise. As the level of input switches on and off twice, each of the repressors has only made one oscillation. The network therefore functions as a frequency multiplier of one half. See main text for an explanation of the network state at each stage.

Mentions: A discrete view of how the frequency multiplier behaviour arises when the input is a square wave can be seen in figure 2. The stages of the systems dynamics are as follows:


A multi-functional synthetic gene network: a frequency multiplier, oscillator and switch.

Purcell O, di Bernardo M, Grierson CS, Savery NJ - PLoS ONE (2011)

A discrete view of the frequency multiplier behaviour.The dynamics can be split into four stages, starting at stage 1 and cycling round clockwise. As the level of input switches on and off twice, each of the repressors has only made one oscillation. The network therefore functions as a frequency multiplier of one half. See main text for an explanation of the network state at each stage.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3040778&req=5

pone-0016140-g002: A discrete view of the frequency multiplier behaviour.The dynamics can be split into four stages, starting at stage 1 and cycling round clockwise. As the level of input switches on and off twice, each of the repressors has only made one oscillation. The network therefore functions as a frequency multiplier of one half. See main text for an explanation of the network state at each stage.
Mentions: A discrete view of how the frequency multiplier behaviour arises when the input is a square wave can be seen in figure 2. The stages of the systems dynamics are as follows:

Bottom Line: Analysis of the bifurcation structure also reveals novel, programmable multi-functionality; in addition to functioning as a frequency multiplier, the network is able to function as a switch or an oscillator, depending on the temporal nature of the input.Multi-functionality is often observed in neuronal networks, where it is suggested to allow for the efficient coordination of different responses.This network represents a significant theoretical addition that extends the capabilities of synthetic gene networks.

View Article: PubMed Central - PubMed

Affiliation: Department of Engineering Mathematics, Bristol Centre for Complexity Sciences, University of Bristol, Bristol, United Kingdom. enoep@bristol.ac.uk

ABSTRACT
We present the design and analysis of a synthetic gene network that performs frequency multiplication. It takes oscillatory transcription factor concentrations, such as those produced from the currently available genetic oscillators, as an input, and produces oscillations with half the input frequency as an output. Analysis of the bifurcation structure also reveals novel, programmable multi-functionality; in addition to functioning as a frequency multiplier, the network is able to function as a switch or an oscillator, depending on the temporal nature of the input. Multi-functionality is often observed in neuronal networks, where it is suggested to allow for the efficient coordination of different responses. This network represents a significant theoretical addition that extends the capabilities of synthetic gene networks.

Show MeSH