Limits...
A multi-functional synthetic gene network: a frequency multiplier, oscillator and switch.

Purcell O, di Bernardo M, Grierson CS, Savery NJ - PLoS ONE (2011)

Bottom Line: Analysis of the bifurcation structure also reveals novel, programmable multi-functionality; in addition to functioning as a frequency multiplier, the network is able to function as a switch or an oscillator, depending on the temporal nature of the input.Multi-functionality is often observed in neuronal networks, where it is suggested to allow for the efficient coordination of different responses.This network represents a significant theoretical addition that extends the capabilities of synthetic gene networks.

View Article: PubMed Central - PubMed

Affiliation: Department of Engineering Mathematics, Bristol Centre for Complexity Sciences, University of Bristol, Bristol, United Kingdom. enoep@bristol.ac.uk

ABSTRACT
We present the design and analysis of a synthetic gene network that performs frequency multiplication. It takes oscillatory transcription factor concentrations, such as those produced from the currently available genetic oscillators, as an input, and produces oscillations with half the input frequency as an output. Analysis of the bifurcation structure also reveals novel, programmable multi-functionality; in addition to functioning as a frequency multiplier, the network is able to function as a switch or an oscillator, depending on the temporal nature of the input. Multi-functionality is often observed in neuronal networks, where it is suggested to allow for the efficient coordination of different responses. This network represents a significant theoretical addition that extends the capabilities of synthetic gene networks.

Show MeSH
Network design.A. Physical representation. R1–R4 are transcriptional repressors, and P1–P6 denote promoters. ‘Input’ is a transcriptional activator. Flat-headed arrows represent repression. B. Node diagram representation. Each node is a repressor, divided into its two promoter sources. Input is represented by ‘I’.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3040778&req=5

pone-0016140-g001: Network design.A. Physical representation. R1–R4 are transcriptional repressors, and P1–P6 denote promoters. ‘Input’ is a transcriptional activator. Flat-headed arrows represent repression. B. Node diagram representation. Each node is a repressor, divided into its two promoter sources. Input is represented by ‘I’.

Mentions: The design of the network is shown in figure 1A. The network comprises 4 gene types, encoding the transcriptional repressors R1, R2, R3 and R4. Each of these genes is present in two copies, with each copy regulated by a different promoter. However, one copy each of R1 and R4 is transcribed as a single transcript, under the control of the promoter P1. Similarly, one copy each of R2 and R3 is transcribed as a single transcript under the control of promoter P2. There are six promoters (P1–P6) in total. Control of gene expression mainly occurs through repression, depicted by flat-headed arrows. Input is defined as the presence of a transcriptional activator, but could equally be the absence of a transcriptional repressor, and acts upon P1 and P2.


A multi-functional synthetic gene network: a frequency multiplier, oscillator and switch.

Purcell O, di Bernardo M, Grierson CS, Savery NJ - PLoS ONE (2011)

Network design.A. Physical representation. R1–R4 are transcriptional repressors, and P1–P6 denote promoters. ‘Input’ is a transcriptional activator. Flat-headed arrows represent repression. B. Node diagram representation. Each node is a repressor, divided into its two promoter sources. Input is represented by ‘I’.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3040778&req=5

pone-0016140-g001: Network design.A. Physical representation. R1–R4 are transcriptional repressors, and P1–P6 denote promoters. ‘Input’ is a transcriptional activator. Flat-headed arrows represent repression. B. Node diagram representation. Each node is a repressor, divided into its two promoter sources. Input is represented by ‘I’.
Mentions: The design of the network is shown in figure 1A. The network comprises 4 gene types, encoding the transcriptional repressors R1, R2, R3 and R4. Each of these genes is present in two copies, with each copy regulated by a different promoter. However, one copy each of R1 and R4 is transcribed as a single transcript, under the control of the promoter P1. Similarly, one copy each of R2 and R3 is transcribed as a single transcript under the control of promoter P2. There are six promoters (P1–P6) in total. Control of gene expression mainly occurs through repression, depicted by flat-headed arrows. Input is defined as the presence of a transcriptional activator, but could equally be the absence of a transcriptional repressor, and acts upon P1 and P2.

Bottom Line: Analysis of the bifurcation structure also reveals novel, programmable multi-functionality; in addition to functioning as a frequency multiplier, the network is able to function as a switch or an oscillator, depending on the temporal nature of the input.Multi-functionality is often observed in neuronal networks, where it is suggested to allow for the efficient coordination of different responses.This network represents a significant theoretical addition that extends the capabilities of synthetic gene networks.

View Article: PubMed Central - PubMed

Affiliation: Department of Engineering Mathematics, Bristol Centre for Complexity Sciences, University of Bristol, Bristol, United Kingdom. enoep@bristol.ac.uk

ABSTRACT
We present the design and analysis of a synthetic gene network that performs frequency multiplication. It takes oscillatory transcription factor concentrations, such as those produced from the currently available genetic oscillators, as an input, and produces oscillations with half the input frequency as an output. Analysis of the bifurcation structure also reveals novel, programmable multi-functionality; in addition to functioning as a frequency multiplier, the network is able to function as a switch or an oscillator, depending on the temporal nature of the input. Multi-functionality is often observed in neuronal networks, where it is suggested to allow for the efficient coordination of different responses. This network represents a significant theoretical addition that extends the capabilities of synthetic gene networks.

Show MeSH