Limits...
Virus infection suppresses Nicotiana benthamiana adaptive phenotypic plasticity.

Bedhomme S, Elena SF - PLoS ONE (2011)

Bottom Line: Our results indicate that the modification of intraspecific competition by parasitism is not present in the Nicotiana benthamiana--potyvirus system and suggests that this phenomenon is not universal but depends on the peculiarities of each pathosystem.However, whereas the healthy N. benthamiana presented a clear shade avoidance syndrome, this phenotypic plasticity totally disappeared when the plants were infected with TEV and TuMV, very likely resulting in a fitness loss and being another form of indirect cost of parasitism.This result suggests that the suppression or the alteration of adaptive phenotypic plasticity might be a component of virulence that is often overlooked.

View Article: PubMed Central - PubMed

Affiliation: Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politecnica de Valencia, Valencia, Spain. stebed@upvnet.upv.es

ABSTRACT
Competition and parasitism are two important selective forces that shape life-histories, migration rates and population dynamics. Recently, it has been shown in various pathosystems that parasites can modify intraspecific competition, thus generating an indirect cost of parasitism. Here, we investigated if this phenomenon was present in a plant-potyvirus system using two viruses of different virulence (Tobacco etch virus and Turnip mosaic virus). Moreover, we asked if parasitism interacted with the shade avoidance syndrome, the plant-specific phenotypic plasticity in response to intraspecific competition. Our results indicate that the modification of intraspecific competition by parasitism is not present in the Nicotiana benthamiana--potyvirus system and suggests that this phenomenon is not universal but depends on the peculiarities of each pathosystem. However, whereas the healthy N. benthamiana presented a clear shade avoidance syndrome, this phenotypic plasticity totally disappeared when the plants were infected with TEV and TuMV, very likely resulting in a fitness loss and being another form of indirect cost of parasitism. This result suggests that the suppression or the alteration of adaptive phenotypic plasticity might be a component of virulence that is often overlooked.

Show MeSH

Related in: MedlinePlus

Experimental plan.The 15 combinations of healthy, TEV inoculated and TuMV inoculated plants in one experimental block. In each line, the central plant has the same infection status and the combinations have been ranked from high to low intraspecific competition (from left to right) as predicted from the known effects of the two viruses on N. benthamiana vegetative growth.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3040767&req=5

pone-0017275-g002: Experimental plan.The 15 combinations of healthy, TEV inoculated and TuMV inoculated plants in one experimental block. In each line, the central plant has the same infection status and the combinations have been ranked from high to low intraspecific competition (from left to right) as predicted from the known effects of the two viruses on N. benthamiana vegetative growth.

Mentions: The experiment consisted in six blocks each constituted by 15 pots containing five N. benthamiana each (figure 2). A preliminary experiment established that five N. benthamiana in a 17 cm diameter pot present an important reduction of aerial part fresh weight compared to a single plant grown in the same pot. Five plants thus represent a condition where intraspecific competition plays an important role in shaping the growth pattern of the plant. In each pot, there was a central plant, which was the focal plant of the experiment. The four other plants, afterwards named “peripheric plants” were disposed at equal distance from the central one, forming a square around it. These plants are the competitors. The central plant and the peripheric ones were either inoculated with inoculation buffer (to produce healthy plants), or with a sap containing 150 mg of TuMV infected tissue homogenized in 255 µL of inoculation buffer or with a sap containing 150 mg of TEV infected tissue homogenized in 850 µL of inoculation buffer. This difference in the buffer volume allows correcting for the difference in LFU of the TEV and TuMV stocks. Each plant was mechanically inoculated 32 days after the seed was sawn with 5 µL of the sap on the third true leaf. Plants were maintained in the greenhouse at 25°C with 16 h of light.


Virus infection suppresses Nicotiana benthamiana adaptive phenotypic plasticity.

Bedhomme S, Elena SF - PLoS ONE (2011)

Experimental plan.The 15 combinations of healthy, TEV inoculated and TuMV inoculated plants in one experimental block. In each line, the central plant has the same infection status and the combinations have been ranked from high to low intraspecific competition (from left to right) as predicted from the known effects of the two viruses on N. benthamiana vegetative growth.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3040767&req=5

pone-0017275-g002: Experimental plan.The 15 combinations of healthy, TEV inoculated and TuMV inoculated plants in one experimental block. In each line, the central plant has the same infection status and the combinations have been ranked from high to low intraspecific competition (from left to right) as predicted from the known effects of the two viruses on N. benthamiana vegetative growth.
Mentions: The experiment consisted in six blocks each constituted by 15 pots containing five N. benthamiana each (figure 2). A preliminary experiment established that five N. benthamiana in a 17 cm diameter pot present an important reduction of aerial part fresh weight compared to a single plant grown in the same pot. Five plants thus represent a condition where intraspecific competition plays an important role in shaping the growth pattern of the plant. In each pot, there was a central plant, which was the focal plant of the experiment. The four other plants, afterwards named “peripheric plants” were disposed at equal distance from the central one, forming a square around it. These plants are the competitors. The central plant and the peripheric ones were either inoculated with inoculation buffer (to produce healthy plants), or with a sap containing 150 mg of TuMV infected tissue homogenized in 255 µL of inoculation buffer or with a sap containing 150 mg of TEV infected tissue homogenized in 850 µL of inoculation buffer. This difference in the buffer volume allows correcting for the difference in LFU of the TEV and TuMV stocks. Each plant was mechanically inoculated 32 days after the seed was sawn with 5 µL of the sap on the third true leaf. Plants were maintained in the greenhouse at 25°C with 16 h of light.

Bottom Line: Our results indicate that the modification of intraspecific competition by parasitism is not present in the Nicotiana benthamiana--potyvirus system and suggests that this phenomenon is not universal but depends on the peculiarities of each pathosystem.However, whereas the healthy N. benthamiana presented a clear shade avoidance syndrome, this phenotypic plasticity totally disappeared when the plants were infected with TEV and TuMV, very likely resulting in a fitness loss and being another form of indirect cost of parasitism.This result suggests that the suppression or the alteration of adaptive phenotypic plasticity might be a component of virulence that is often overlooked.

View Article: PubMed Central - PubMed

Affiliation: Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politecnica de Valencia, Valencia, Spain. stebed@upvnet.upv.es

ABSTRACT
Competition and parasitism are two important selective forces that shape life-histories, migration rates and population dynamics. Recently, it has been shown in various pathosystems that parasites can modify intraspecific competition, thus generating an indirect cost of parasitism. Here, we investigated if this phenomenon was present in a plant-potyvirus system using two viruses of different virulence (Tobacco etch virus and Turnip mosaic virus). Moreover, we asked if parasitism interacted with the shade avoidance syndrome, the plant-specific phenotypic plasticity in response to intraspecific competition. Our results indicate that the modification of intraspecific competition by parasitism is not present in the Nicotiana benthamiana--potyvirus system and suggests that this phenomenon is not universal but depends on the peculiarities of each pathosystem. However, whereas the healthy N. benthamiana presented a clear shade avoidance syndrome, this phenotypic plasticity totally disappeared when the plants were infected with TEV and TuMV, very likely resulting in a fitness loss and being another form of indirect cost of parasitism. This result suggests that the suppression or the alteration of adaptive phenotypic plasticity might be a component of virulence that is often overlooked.

Show MeSH
Related in: MedlinePlus