Limits...
Aging in language dynamics.

Mukherjee A, Tria F, Baronchelli A, Puglisi A, Loreto V - PLoS ONE (2011)

Bottom Line: The observed emerging asymptotic categorization, which has been previously tested--with success--against experimental data from human languages, corresponds to a metastable state where global shifts are always possible but progressively more unlikely and the response properties depend on the age of the system.This aging mechanism exhibits striking quantitative analogies to what is observed in the statistical mechanics of glassy systems.We argue that this can be a general scenario in language dynamics where shared linguistic conventions would not emerge as attractors, but rather as metastable states.

View Article: PubMed Central - PubMed

Affiliation: Institute for Scientific Interchange (ISI), Torino, Italy.

ABSTRACT
Human languages evolve continuously, and a puzzling problem is how to reconcile the apparent robustness of most of the deep linguistic structures we use with the evidence that they undergo possibly slow, yet ceaseless, changes. Is the state in which we observe languages today closer to what would be a dynamical attractor with statistically stationary properties or rather closer to a non-steady state slowly evolving in time? Here we address this question in the framework of the emergence of shared linguistic categories in a population of individuals interacting through language games. The observed emerging asymptotic categorization, which has been previously tested--with success--against experimental data from human languages, corresponds to a metastable state where global shifts are always possible but progressively more unlikely and the response properties depend on the age of the system. This aging mechanism exhibits striking quantitative analogies to what is observed in the statistical mechanics of glassy systems. We argue that this can be a general scenario in language dynamics where shared linguistic conventions would not emerge as attractors, but rather as metastable states.

Show MeSH
Typical long-time configuration of five representative agents in the population.For each agent perceptual and linguistic categories (separated by short and long bars, respectively) are shown. The highlighted portion of two agents illustrates an instance of a successful game in a so-called mismatch region between the linguistic categories of the two agents associated with the words “a” and “b” (see Materials and Methods for details). The hearer - in a previous game - learned the word “a” as a synonym for the perceptual category at the leftmost boundary of the linguistic category “b”. During the game the speaker utters “a” for the topic; as a result the hearer deletes “b” from her inventory, keeping “a” as the name for that perceptual category, moving de facto the linguistic boundary.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3040735&req=5

pone-0016677-g001: Typical long-time configuration of five representative agents in the population.For each agent perceptual and linguistic categories (separated by short and long bars, respectively) are shown. The highlighted portion of two agents illustrates an instance of a successful game in a so-called mismatch region between the linguistic categories of the two agents associated with the words “a” and “b” (see Materials and Methods for details). The hearer - in a previous game - learned the word “a” as a synonym for the perceptual category at the leftmost boundary of the linguistic category “b”. During the game the speaker utters “a” for the topic; as a result the hearer deletes “b” from her inventory, keeping “a” as the name for that perceptual category, moving de facto the linguistic boundary.

Mentions: The Category Game [22] (see Materials and Methods for the details) describes the emergence of a hierarchical category structure made of two distinct levels: a basic layer, responsible for fine discrimination of the environment (perceptual categories), and a shared linguistic layer that groups together perceptions to guarantee communicative success (linguistic categories). At each time step a pair of individuals (one will be denoted as the speaker and the other as the hearer) is randomly selected from the population to play a language game that allow them to co-evolve the structure of their categories as well as their form-meaning inventories. Fig. 1 depicts a typical long-time configuration of the emerging category structure. While the number of perceptual categories (separated by short bars in fig. 1) is tuned by a parameter of the model (see Materials and Methods) and can be arbitrarily large, the number of linguistic categories (separated by long bars in fig. 1 and grouping together several perceptual categories sharing the same word) turns out to be finite and small, as observed in natural languages (for instance, like the basic color names across languages).


Aging in language dynamics.

Mukherjee A, Tria F, Baronchelli A, Puglisi A, Loreto V - PLoS ONE (2011)

Typical long-time configuration of five representative agents in the population.For each agent perceptual and linguistic categories (separated by short and long bars, respectively) are shown. The highlighted portion of two agents illustrates an instance of a successful game in a so-called mismatch region between the linguistic categories of the two agents associated with the words “a” and “b” (see Materials and Methods for details). The hearer - in a previous game - learned the word “a” as a synonym for the perceptual category at the leftmost boundary of the linguistic category “b”. During the game the speaker utters “a” for the topic; as a result the hearer deletes “b” from her inventory, keeping “a” as the name for that perceptual category, moving de facto the linguistic boundary.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3040735&req=5

pone-0016677-g001: Typical long-time configuration of five representative agents in the population.For each agent perceptual and linguistic categories (separated by short and long bars, respectively) are shown. The highlighted portion of two agents illustrates an instance of a successful game in a so-called mismatch region between the linguistic categories of the two agents associated with the words “a” and “b” (see Materials and Methods for details). The hearer - in a previous game - learned the word “a” as a synonym for the perceptual category at the leftmost boundary of the linguistic category “b”. During the game the speaker utters “a” for the topic; as a result the hearer deletes “b” from her inventory, keeping “a” as the name for that perceptual category, moving de facto the linguistic boundary.
Mentions: The Category Game [22] (see Materials and Methods for the details) describes the emergence of a hierarchical category structure made of two distinct levels: a basic layer, responsible for fine discrimination of the environment (perceptual categories), and a shared linguistic layer that groups together perceptions to guarantee communicative success (linguistic categories). At each time step a pair of individuals (one will be denoted as the speaker and the other as the hearer) is randomly selected from the population to play a language game that allow them to co-evolve the structure of their categories as well as their form-meaning inventories. Fig. 1 depicts a typical long-time configuration of the emerging category structure. While the number of perceptual categories (separated by short bars in fig. 1) is tuned by a parameter of the model (see Materials and Methods) and can be arbitrarily large, the number of linguistic categories (separated by long bars in fig. 1 and grouping together several perceptual categories sharing the same word) turns out to be finite and small, as observed in natural languages (for instance, like the basic color names across languages).

Bottom Line: The observed emerging asymptotic categorization, which has been previously tested--with success--against experimental data from human languages, corresponds to a metastable state where global shifts are always possible but progressively more unlikely and the response properties depend on the age of the system.This aging mechanism exhibits striking quantitative analogies to what is observed in the statistical mechanics of glassy systems.We argue that this can be a general scenario in language dynamics where shared linguistic conventions would not emerge as attractors, but rather as metastable states.

View Article: PubMed Central - PubMed

Affiliation: Institute for Scientific Interchange (ISI), Torino, Italy.

ABSTRACT
Human languages evolve continuously, and a puzzling problem is how to reconcile the apparent robustness of most of the deep linguistic structures we use with the evidence that they undergo possibly slow, yet ceaseless, changes. Is the state in which we observe languages today closer to what would be a dynamical attractor with statistically stationary properties or rather closer to a non-steady state slowly evolving in time? Here we address this question in the framework of the emergence of shared linguistic categories in a population of individuals interacting through language games. The observed emerging asymptotic categorization, which has been previously tested--with success--against experimental data from human languages, corresponds to a metastable state where global shifts are always possible but progressively more unlikely and the response properties depend on the age of the system. This aging mechanism exhibits striking quantitative analogies to what is observed in the statistical mechanics of glassy systems. We argue that this can be a general scenario in language dynamics where shared linguistic conventions would not emerge as attractors, but rather as metastable states.

Show MeSH