Limits...
Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery.

Van Lieshout EM, Van Kralingen GH, El-Massoudi Y, Weinans H, Patka P - BMC Musculoskelet Disord (2011)

Bottom Line: Young's Modulus was highest in Calcibon® (790 MPa) and lowest in Ostim® (6 MPa).The bone substitutes tested display a wide range in structural properties and compression strength, indicating that they will be suitable for different clinical indications.The data outlined here will help surgeons to select the most suitable products currently available for specific clinical indications.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Surgery-Traumatology, Erasmus MC, University Medical Centre Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands. e.vanlieshout@erasmusmc.nl

ABSTRACT

Background: Many (artificial) bone substitute materials are currently available for use in orthopaedic trauma surgery. Objective data on their biological and biomechanical characteristics, which determine their clinical application, is mostly lacking. The aim of this study was to investigate structural and in vitro mechanical properties of nine bone substitute cements registered for use in orthopaedic trauma surgery in the Netherlands.

Methods: Seven calcium phosphate cements (BoneSource®, Calcibon®, ChronOS®, Eurobone®, HydroSet™, Norian SRS®, and Ostim®), one calcium sulphate cement (MIIG® X3), and one bioactive glass cement (Cortoss®) were tested. Structural characteristics were measured by micro-CT scanning. Compression strength and stiffness were determined following unconfined compression tests.

Results: Each bone substitute had unique characteristics. Mean total porosity ranged from 53% (Ostim®) to 0.5% (Norian SRS®). Mean pore size exceeded 100 μm only in Eurobone® and Cortoss® (162.2 ± 107.1 μm and 148.4 ± 70.6 μm, respectively). However, 230 μm pores were found in Calcibon®, Norian SRS®, HydroSet™, and MIIG® X3. Connectivity density ranged from 27/cm3 for HydroSet™ to 0.03/cm3 for Calcibon®. The ultimate compression strength was highest in Cortoss® (47.32 MPa) and lowest in Ostim® (0.24 MPa). Young's Modulus was highest in Calcibon® (790 MPa) and lowest in Ostim® (6 MPa).

Conclusions: The bone substitutes tested display a wide range in structural properties and compression strength, indicating that they will be suitable for different clinical indications. The data outlined here will help surgeons to select the most suitable products currently available for specific clinical indications.

Show MeSH

Related in: MedlinePlus

Densities of bone substitutes Densities of individual test samples were calculated from their length, diameter and weight. Each dot represents an individual test sample, and lines indicate the average value. The table below the figure provides an overview of the statistical analysis of pairwise comparisons (Student's T-test with Bonferroni correction). *, p < 0.05; **, p < 0.01; ***, p < 0.005; ns, not statistically significantly different. Grey boxes represent the self-self combinations, which could not be tested.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3040718&req=5

Figure 2: Densities of bone substitutes Densities of individual test samples were calculated from their length, diameter and weight. Each dot represents an individual test sample, and lines indicate the average value. The table below the figure provides an overview of the statistical analysis of pairwise comparisons (Student's T-test with Bonferroni correction). *, p < 0.05; **, p < 0.01; ***, p < 0.005; ns, not statistically significantly different. Grey boxes represent the self-self combinations, which could not be tested.

Mentions: The density of all test samples was calculated from the length, diameter and weight (Figure 2). The CaSO4 MIIG® X3 had the highest density (1.92 ± 0.08 mg/mm3), followed by the bioactive glass Cortoss® and the CaPO4 Eurobone®, which both had an average density of 1.79 mg/mm3. The density of the other CaPO4 products ranged from 1.78 ± 0.07 mg/mm3 (BoneSource®) to1.29 ± 0.09 mg/mm3 (Ostim®). The density of MIIG® X3 was significantly higher than all other products, whereas the density of Ostim® was significantly lower.


Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery.

Van Lieshout EM, Van Kralingen GH, El-Massoudi Y, Weinans H, Patka P - BMC Musculoskelet Disord (2011)

Densities of bone substitutes Densities of individual test samples were calculated from their length, diameter and weight. Each dot represents an individual test sample, and lines indicate the average value. The table below the figure provides an overview of the statistical analysis of pairwise comparisons (Student's T-test with Bonferroni correction). *, p < 0.05; **, p < 0.01; ***, p < 0.005; ns, not statistically significantly different. Grey boxes represent the self-self combinations, which could not be tested.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3040718&req=5

Figure 2: Densities of bone substitutes Densities of individual test samples were calculated from their length, diameter and weight. Each dot represents an individual test sample, and lines indicate the average value. The table below the figure provides an overview of the statistical analysis of pairwise comparisons (Student's T-test with Bonferroni correction). *, p < 0.05; **, p < 0.01; ***, p < 0.005; ns, not statistically significantly different. Grey boxes represent the self-self combinations, which could not be tested.
Mentions: The density of all test samples was calculated from the length, diameter and weight (Figure 2). The CaSO4 MIIG® X3 had the highest density (1.92 ± 0.08 mg/mm3), followed by the bioactive glass Cortoss® and the CaPO4 Eurobone®, which both had an average density of 1.79 mg/mm3. The density of the other CaPO4 products ranged from 1.78 ± 0.07 mg/mm3 (BoneSource®) to1.29 ± 0.09 mg/mm3 (Ostim®). The density of MIIG® X3 was significantly higher than all other products, whereas the density of Ostim® was significantly lower.

Bottom Line: Young's Modulus was highest in Calcibon® (790 MPa) and lowest in Ostim® (6 MPa).The bone substitutes tested display a wide range in structural properties and compression strength, indicating that they will be suitable for different clinical indications.The data outlined here will help surgeons to select the most suitable products currently available for specific clinical indications.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Surgery-Traumatology, Erasmus MC, University Medical Centre Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands. e.vanlieshout@erasmusmc.nl

ABSTRACT

Background: Many (artificial) bone substitute materials are currently available for use in orthopaedic trauma surgery. Objective data on their biological and biomechanical characteristics, which determine their clinical application, is mostly lacking. The aim of this study was to investigate structural and in vitro mechanical properties of nine bone substitute cements registered for use in orthopaedic trauma surgery in the Netherlands.

Methods: Seven calcium phosphate cements (BoneSource®, Calcibon®, ChronOS®, Eurobone®, HydroSet™, Norian SRS®, and Ostim®), one calcium sulphate cement (MIIG® X3), and one bioactive glass cement (Cortoss®) were tested. Structural characteristics were measured by micro-CT scanning. Compression strength and stiffness were determined following unconfined compression tests.

Results: Each bone substitute had unique characteristics. Mean total porosity ranged from 53% (Ostim®) to 0.5% (Norian SRS®). Mean pore size exceeded 100 μm only in Eurobone® and Cortoss® (162.2 ± 107.1 μm and 148.4 ± 70.6 μm, respectively). However, 230 μm pores were found in Calcibon®, Norian SRS®, HydroSet™, and MIIG® X3. Connectivity density ranged from 27/cm3 for HydroSet™ to 0.03/cm3 for Calcibon®. The ultimate compression strength was highest in Cortoss® (47.32 MPa) and lowest in Ostim® (0.24 MPa). Young's Modulus was highest in Calcibon® (790 MPa) and lowest in Ostim® (6 MPa).

Conclusions: The bone substitutes tested display a wide range in structural properties and compression strength, indicating that they will be suitable for different clinical indications. The data outlined here will help surgeons to select the most suitable products currently available for specific clinical indications.

Show MeSH
Related in: MedlinePlus