Limits...
Genital tract sequestration of SIV following acute infection.

Whitney JB, Hraber PT, Luedemann C, Giorgi EE, Daniels MG, Bhattacharya T, Rao SS, Mascola JR, Nabel GJ, Korber BT, Letvin NL - PLoS Pathog. (2011)

Bottom Line: We characterized the evolution of simian immunodeficiency virus (SIV) in the male genital tract by examining blood- and semen-associated virus from experimentally and sham vaccinated rhesus monkeys during primary infection.At the time of peak virus replication, SIV sequences were intermixed between the blood and semen supporting a scenario of high-level virus "spillover" into the male genital tract.These findings suggest that SIV replication in the male genital tract evolves to compartmentalization after peak viremia resolves.

View Article: PubMed Central - PubMed

Affiliation: Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA. jwhitne2@bidmc.harvard.edu

ABSTRACT
We characterized the evolution of simian immunodeficiency virus (SIV) in the male genital tract by examining blood- and semen-associated virus from experimentally and sham vaccinated rhesus monkeys during primary infection. At the time of peak virus replication, SIV sequences were intermixed between the blood and semen supporting a scenario of high-level virus "spillover" into the male genital tract. However, at the time of virus set point, compartmentalization was apparent in 4 of 7 evaluated monkeys, likely as a consequence of restricted virus gene flow between anatomic compartments after the resolution of primary viremia. These findings suggest that SIV replication in the male genital tract evolves to compartmentalization after peak viremia resolves.

Show MeSH

Related in: MedlinePlus

Restricted gene flow between the blood and semen is temporally associated with compartmentalization.SM migration events were plotted directly onto NJ trees for the 4 monkeys characterized 16 weeks after SIV challenge. Unrestricted viral gene flow between the blood and semen in monkeys C171 (A) and DA2D (B), and restricted gene flow in compartmentalized monkeys AY89 (C) and AX93 (D).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3040679&req=5

ppat-1001293-g006: Restricted gene flow between the blood and semen is temporally associated with compartmentalization.SM migration events were plotted directly onto NJ trees for the 4 monkeys characterized 16 weeks after SIV challenge. Unrestricted viral gene flow between the blood and semen in monkeys C171 (A) and DA2D (B), and restricted gene flow in compartmentalized monkeys AY89 (C) and AX93 (D).

Mentions: We next determined the relative levels of virus migration between the blood and semen by computing the minimum number of SM migration events for each inferred phylogenetic tree. These migrations occur where an internal node exhibits a change of sample source (blood or semen) among immediate descendents of that node. When these migration points were mapped directly onto phylogenies, we observed a concordance of semen compartmentalization with the number of migration events between these anatomic compartments, in individual monkeys. For example, the frequent migration events between the blood and male genital tract, as shown for monkeys C171, and DA2D (Fig. 6A and B), are consistent with unimpeded gene flow resulting in homogenous co-evolving SIV env populations. Restricted migration, as shown for monkey AY89 and AX93 (Fig. 6C and D) is consistent with the independent evolution of virus replicating in the blood and male genital tract. Therefore, we have documented examples of both unimpeded and restricted gene flow with the latter manifesting itself as virus compartmentalization.


Genital tract sequestration of SIV following acute infection.

Whitney JB, Hraber PT, Luedemann C, Giorgi EE, Daniels MG, Bhattacharya T, Rao SS, Mascola JR, Nabel GJ, Korber BT, Letvin NL - PLoS Pathog. (2011)

Restricted gene flow between the blood and semen is temporally associated with compartmentalization.SM migration events were plotted directly onto NJ trees for the 4 monkeys characterized 16 weeks after SIV challenge. Unrestricted viral gene flow between the blood and semen in monkeys C171 (A) and DA2D (B), and restricted gene flow in compartmentalized monkeys AY89 (C) and AX93 (D).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3040679&req=5

ppat-1001293-g006: Restricted gene flow between the blood and semen is temporally associated with compartmentalization.SM migration events were plotted directly onto NJ trees for the 4 monkeys characterized 16 weeks after SIV challenge. Unrestricted viral gene flow between the blood and semen in monkeys C171 (A) and DA2D (B), and restricted gene flow in compartmentalized monkeys AY89 (C) and AX93 (D).
Mentions: We next determined the relative levels of virus migration between the blood and semen by computing the minimum number of SM migration events for each inferred phylogenetic tree. These migrations occur where an internal node exhibits a change of sample source (blood or semen) among immediate descendents of that node. When these migration points were mapped directly onto phylogenies, we observed a concordance of semen compartmentalization with the number of migration events between these anatomic compartments, in individual monkeys. For example, the frequent migration events between the blood and male genital tract, as shown for monkeys C171, and DA2D (Fig. 6A and B), are consistent with unimpeded gene flow resulting in homogenous co-evolving SIV env populations. Restricted migration, as shown for monkey AY89 and AX93 (Fig. 6C and D) is consistent with the independent evolution of virus replicating in the blood and male genital tract. Therefore, we have documented examples of both unimpeded and restricted gene flow with the latter manifesting itself as virus compartmentalization.

Bottom Line: We characterized the evolution of simian immunodeficiency virus (SIV) in the male genital tract by examining blood- and semen-associated virus from experimentally and sham vaccinated rhesus monkeys during primary infection.At the time of peak virus replication, SIV sequences were intermixed between the blood and semen supporting a scenario of high-level virus "spillover" into the male genital tract.These findings suggest that SIV replication in the male genital tract evolves to compartmentalization after peak viremia resolves.

View Article: PubMed Central - PubMed

Affiliation: Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA. jwhitne2@bidmc.harvard.edu

ABSTRACT
We characterized the evolution of simian immunodeficiency virus (SIV) in the male genital tract by examining blood- and semen-associated virus from experimentally and sham vaccinated rhesus monkeys during primary infection. At the time of peak virus replication, SIV sequences were intermixed between the blood and semen supporting a scenario of high-level virus "spillover" into the male genital tract. However, at the time of virus set point, compartmentalization was apparent in 4 of 7 evaluated monkeys, likely as a consequence of restricted virus gene flow between anatomic compartments after the resolution of primary viremia. These findings suggest that SIV replication in the male genital tract evolves to compartmentalization after peak viremia resolves.

Show MeSH
Related in: MedlinePlus