Limits...
Genital tract sequestration of SIV following acute infection.

Whitney JB, Hraber PT, Luedemann C, Giorgi EE, Daniels MG, Bhattacharya T, Rao SS, Mascola JR, Nabel GJ, Korber BT, Letvin NL - PLoS Pathog. (2011)

Bottom Line: We characterized the evolution of simian immunodeficiency virus (SIV) in the male genital tract by examining blood- and semen-associated virus from experimentally and sham vaccinated rhesus monkeys during primary infection.At the time of peak virus replication, SIV sequences were intermixed between the blood and semen supporting a scenario of high-level virus "spillover" into the male genital tract.These findings suggest that SIV replication in the male genital tract evolves to compartmentalization after peak viremia resolves.

View Article: PubMed Central - PubMed

Affiliation: Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA. jwhitne2@bidmc.harvard.edu

ABSTRACT
We characterized the evolution of simian immunodeficiency virus (SIV) in the male genital tract by examining blood- and semen-associated virus from experimentally and sham vaccinated rhesus monkeys during primary infection. At the time of peak virus replication, SIV sequences were intermixed between the blood and semen supporting a scenario of high-level virus "spillover" into the male genital tract. However, at the time of virus set point, compartmentalization was apparent in 4 of 7 evaluated monkeys, likely as a consequence of restricted virus gene flow between anatomic compartments after the resolution of primary viremia. These findings suggest that SIV replication in the male genital tract evolves to compartmentalization after peak viremia resolves.

Show MeSH

Related in: MedlinePlus

Anatomic sequestration, and diversification of SIV during set point virus replication.By 16 weeks after SIV challenge, compartmentalization of virus in semen and blood was apparent in 4 of 7 animals on the basis of tree topology and the SM test. NJ trees of SGA-derived env amplicons for compartmentalized monkeys (A) C179, (B) AX93 (C) AX89, and (D) AY89 are shown. Note that monkey AX89 is a control monkey and C179, AX93 and AY89 are vaccinated animals.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3040679&req=5

ppat-1001293-g004: Anatomic sequestration, and diversification of SIV during set point virus replication.By 16 weeks after SIV challenge, compartmentalization of virus in semen and blood was apparent in 4 of 7 animals on the basis of tree topology and the SM test. NJ trees of SGA-derived env amplicons for compartmentalized monkeys (A) C179, (B) AX93 (C) AX89, and (D) AY89 are shown. Note that monkey AX89 is a control monkey and C179, AX93 and AY89 are vaccinated animals.

Mentions: By week 16 following infection, we could readily detect virus compartmentalization by phylogenetic inference in 4 of the 7 monkeys that had sufficient numbers of sequences for analysis (Fig. 4). Compartmentalization is evident in these trees as independent clades consisting of sequences from one a single sample source, i.e. blood or semen. Included as a Supplement, are trees that combine sequencing data from both compartments at both acute and chronic time points (Fig. S1–S10 in Text S1). Typically, we observed that week 16 semen sequences tend to not be associated with those from week 2, rather they are evident as independent clades.


Genital tract sequestration of SIV following acute infection.

Whitney JB, Hraber PT, Luedemann C, Giorgi EE, Daniels MG, Bhattacharya T, Rao SS, Mascola JR, Nabel GJ, Korber BT, Letvin NL - PLoS Pathog. (2011)

Anatomic sequestration, and diversification of SIV during set point virus replication.By 16 weeks after SIV challenge, compartmentalization of virus in semen and blood was apparent in 4 of 7 animals on the basis of tree topology and the SM test. NJ trees of SGA-derived env amplicons for compartmentalized monkeys (A) C179, (B) AX93 (C) AX89, and (D) AY89 are shown. Note that monkey AX89 is a control monkey and C179, AX93 and AY89 are vaccinated animals.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3040679&req=5

ppat-1001293-g004: Anatomic sequestration, and diversification of SIV during set point virus replication.By 16 weeks after SIV challenge, compartmentalization of virus in semen and blood was apparent in 4 of 7 animals on the basis of tree topology and the SM test. NJ trees of SGA-derived env amplicons for compartmentalized monkeys (A) C179, (B) AX93 (C) AX89, and (D) AY89 are shown. Note that monkey AX89 is a control monkey and C179, AX93 and AY89 are vaccinated animals.
Mentions: By week 16 following infection, we could readily detect virus compartmentalization by phylogenetic inference in 4 of the 7 monkeys that had sufficient numbers of sequences for analysis (Fig. 4). Compartmentalization is evident in these trees as independent clades consisting of sequences from one a single sample source, i.e. blood or semen. Included as a Supplement, are trees that combine sequencing data from both compartments at both acute and chronic time points (Fig. S1–S10 in Text S1). Typically, we observed that week 16 semen sequences tend to not be associated with those from week 2, rather they are evident as independent clades.

Bottom Line: We characterized the evolution of simian immunodeficiency virus (SIV) in the male genital tract by examining blood- and semen-associated virus from experimentally and sham vaccinated rhesus monkeys during primary infection.At the time of peak virus replication, SIV sequences were intermixed between the blood and semen supporting a scenario of high-level virus "spillover" into the male genital tract.These findings suggest that SIV replication in the male genital tract evolves to compartmentalization after peak viremia resolves.

View Article: PubMed Central - PubMed

Affiliation: Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA. jwhitne2@bidmc.harvard.edu

ABSTRACT
We characterized the evolution of simian immunodeficiency virus (SIV) in the male genital tract by examining blood- and semen-associated virus from experimentally and sham vaccinated rhesus monkeys during primary infection. At the time of peak virus replication, SIV sequences were intermixed between the blood and semen supporting a scenario of high-level virus "spillover" into the male genital tract. However, at the time of virus set point, compartmentalization was apparent in 4 of 7 evaluated monkeys, likely as a consequence of restricted virus gene flow between anatomic compartments after the resolution of primary viremia. These findings suggest that SIV replication in the male genital tract evolves to compartmentalization after peak viremia resolves.

Show MeSH
Related in: MedlinePlus