Limits...
The influence of hyperbaric oxygen treatment on the healing of experimental defects filled with different bone graft substitutes.

Sirin Y, Olgac V, Dogru-Abbasoglu S, Tapul L, Aktas S, Soley S - Int J Med Sci (2011)

Bottom Line: To assess potential effects of hyperbaric oxygen (HBOT) on artificial bone grafts, β - Tricalcium phosphate (β-TCP) and calcium phosphate coated bovine bone (CPCBB) substitutes were applied to standard bone defects in rat tibiae.The healing of defects filled with CPCBB was similar to the controls and it did not respond to HBOT.These findings suggested that the HBOT had beneficial effects on the healing of unfilled bone defects and those filled with β-TCP bone substitute but not with CPCBB, indicating a material-specific influence pattern of HBOT.

View Article: PubMed Central - PubMed

Affiliation: Istanbul University, Faculty of Dentistry, Department of Oral Surgery, Istanbul, Turkey. ysirin@istanbul.edu.tr

ABSTRACT
To assess potential effects of hyperbaric oxygen (HBOT) on artificial bone grafts, β - Tricalcium phosphate (β-TCP) and calcium phosphate coated bovine bone (CPCBB) substitutes were applied to standard bone defects in rat tibiae. The control defects were left empty. Half of the animals received 60 minutes of 2.4 atmosphere absolute (ATA) of HBOT. Rats were sacrificed at one, two and four weeks. Bone healing was assessed histologically and histomorphometrically using light microscopy. The periosteum over the bone defects was examined ultrastructurally. Cardiac blood was collected to determine the serum osteocalcin levels. The HBOT increased new bone formation in the unfilled controls and β-TCP groups and significantly decreased cartilage matrix and fibrous tissue formations in all groups. Active osteoblasts and highly organized collagen fibrils were prominent in the periosteum of β-TCP and control groups. Serum osteocalcin levels also increased with HBOT. The healing of defects filled with CPCBB was similar to the controls and it did not respond to HBOT. These findings suggested that the HBOT had beneficial effects on the healing of unfilled bone defects and those filled with β-TCP bone substitute but not with CPCBB, indicating a material-specific influence pattern of HBOT.

Show MeSH

Related in: MedlinePlus

Residual β-TCP bone graft material is seen between two osteoblast cells of the periosteum, note the cytoplasmic processes (arrows) extending from the cell membrane to the bone graft substitute. This electron micrograph was taken from the β-TCP + HBOT group which were sacrificed at one week time point (TEM×7500) (N; Nucleus, R; Ribosome, Ger; Granular Endoplasmic Reticulum).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3039227&req=5

Figure 6: Residual β-TCP bone graft material is seen between two osteoblast cells of the periosteum, note the cytoplasmic processes (arrows) extending from the cell membrane to the bone graft substitute. This electron micrograph was taken from the β-TCP + HBOT group which were sacrificed at one week time point (TEM×7500) (N; Nucleus, R; Ribosome, Ger; Granular Endoplasmic Reticulum).

Mentions: The ultrastructural findings in the Control + HBOT and B-TCP + HBOT (Figure 6) groups were similar to their non-HBO counterparts with the exceptions of dominant cell types and collagen structure at the early stages of healing. Our observations at one week specimens revealed that the chondroblasts had become scarce and they were mainly replaced by highly active osteoblasts that contain well-developed intracytoplasmic organelles. Additionally, the collagen fibrils appeared to be more organized in bundles. On the other hand, HBOT did not seem to have an effect over the periosteal cell structure of the CPCBB group (Figure 7 a and b) as the cellular degeneration findings were still clearly visible at all time points (Figure 8).


The influence of hyperbaric oxygen treatment on the healing of experimental defects filled with different bone graft substitutes.

Sirin Y, Olgac V, Dogru-Abbasoglu S, Tapul L, Aktas S, Soley S - Int J Med Sci (2011)

Residual β-TCP bone graft material is seen between two osteoblast cells of the periosteum, note the cytoplasmic processes (arrows) extending from the cell membrane to the bone graft substitute. This electron micrograph was taken from the β-TCP + HBOT group which were sacrificed at one week time point (TEM×7500) (N; Nucleus, R; Ribosome, Ger; Granular Endoplasmic Reticulum).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3039227&req=5

Figure 6: Residual β-TCP bone graft material is seen between two osteoblast cells of the periosteum, note the cytoplasmic processes (arrows) extending from the cell membrane to the bone graft substitute. This electron micrograph was taken from the β-TCP + HBOT group which were sacrificed at one week time point (TEM×7500) (N; Nucleus, R; Ribosome, Ger; Granular Endoplasmic Reticulum).
Mentions: The ultrastructural findings in the Control + HBOT and B-TCP + HBOT (Figure 6) groups were similar to their non-HBO counterparts with the exceptions of dominant cell types and collagen structure at the early stages of healing. Our observations at one week specimens revealed that the chondroblasts had become scarce and they were mainly replaced by highly active osteoblasts that contain well-developed intracytoplasmic organelles. Additionally, the collagen fibrils appeared to be more organized in bundles. On the other hand, HBOT did not seem to have an effect over the periosteal cell structure of the CPCBB group (Figure 7 a and b) as the cellular degeneration findings were still clearly visible at all time points (Figure 8).

Bottom Line: To assess potential effects of hyperbaric oxygen (HBOT) on artificial bone grafts, β - Tricalcium phosphate (β-TCP) and calcium phosphate coated bovine bone (CPCBB) substitutes were applied to standard bone defects in rat tibiae.The healing of defects filled with CPCBB was similar to the controls and it did not respond to HBOT.These findings suggested that the HBOT had beneficial effects on the healing of unfilled bone defects and those filled with β-TCP bone substitute but not with CPCBB, indicating a material-specific influence pattern of HBOT.

View Article: PubMed Central - PubMed

Affiliation: Istanbul University, Faculty of Dentistry, Department of Oral Surgery, Istanbul, Turkey. ysirin@istanbul.edu.tr

ABSTRACT
To assess potential effects of hyperbaric oxygen (HBOT) on artificial bone grafts, β - Tricalcium phosphate (β-TCP) and calcium phosphate coated bovine bone (CPCBB) substitutes were applied to standard bone defects in rat tibiae. The control defects were left empty. Half of the animals received 60 minutes of 2.4 atmosphere absolute (ATA) of HBOT. Rats were sacrificed at one, two and four weeks. Bone healing was assessed histologically and histomorphometrically using light microscopy. The periosteum over the bone defects was examined ultrastructurally. Cardiac blood was collected to determine the serum osteocalcin levels. The HBOT increased new bone formation in the unfilled controls and β-TCP groups and significantly decreased cartilage matrix and fibrous tissue formations in all groups. Active osteoblasts and highly organized collagen fibrils were prominent in the periosteum of β-TCP and control groups. Serum osteocalcin levels also increased with HBOT. The healing of defects filled with CPCBB was similar to the controls and it did not respond to HBOT. These findings suggested that the HBOT had beneficial effects on the healing of unfilled bone defects and those filled with β-TCP bone substitute but not with CPCBB, indicating a material-specific influence pattern of HBOT.

Show MeSH
Related in: MedlinePlus