Limits...
The influence of hyperbaric oxygen treatment on the healing of experimental defects filled with different bone graft substitutes.

Sirin Y, Olgac V, Dogru-Abbasoglu S, Tapul L, Aktas S, Soley S - Int J Med Sci (2011)

Bottom Line: To assess potential effects of hyperbaric oxygen (HBOT) on artificial bone grafts, β - Tricalcium phosphate (β-TCP) and calcium phosphate coated bovine bone (CPCBB) substitutes were applied to standard bone defects in rat tibiae.The healing of defects filled with CPCBB was similar to the controls and it did not respond to HBOT.These findings suggested that the HBOT had beneficial effects on the healing of unfilled bone defects and those filled with β-TCP bone substitute but not with CPCBB, indicating a material-specific influence pattern of HBOT.

View Article: PubMed Central - PubMed

Affiliation: Istanbul University, Faculty of Dentistry, Department of Oral Surgery, Istanbul, Turkey. ysirin@istanbul.edu.tr

ABSTRACT
To assess potential effects of hyperbaric oxygen (HBOT) on artificial bone grafts, β - Tricalcium phosphate (β-TCP) and calcium phosphate coated bovine bone (CPCBB) substitutes were applied to standard bone defects in rat tibiae. The control defects were left empty. Half of the animals received 60 minutes of 2.4 atmosphere absolute (ATA) of HBOT. Rats were sacrificed at one, two and four weeks. Bone healing was assessed histologically and histomorphometrically using light microscopy. The periosteum over the bone defects was examined ultrastructurally. Cardiac blood was collected to determine the serum osteocalcin levels. The HBOT increased new bone formation in the unfilled controls and β-TCP groups and significantly decreased cartilage matrix and fibrous tissue formations in all groups. Active osteoblasts and highly organized collagen fibrils were prominent in the periosteum of β-TCP and control groups. Serum osteocalcin levels also increased with HBOT. The healing of defects filled with CPCBB was similar to the controls and it did not respond to HBOT. These findings suggested that the HBOT had beneficial effects on the healing of unfilled bone defects and those filled with β-TCP bone substitute but not with CPCBB, indicating a material-specific influence pattern of HBOT.

Show MeSH

Related in: MedlinePlus

The ultrastructural appearance of two periosteal osteoblast cells with well developed intracytoplasmic organelles in the control group without HBOT at one week time point ( TEM ×6000) (N; Nucleus, Ger; Granular endoplasmic reticulum, Mi; Mitochondrion; Cf; Collagen Fibrils).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3039227&req=5

Figure 5: The ultrastructural appearance of two periosteal osteoblast cells with well developed intracytoplasmic organelles in the control group without HBOT at one week time point ( TEM ×6000) (N; Nucleus, Ger; Granular endoplasmic reticulum, Mi; Mitochondrion; Cf; Collagen Fibrils).

Mentions: In the ultrastructural evaluation of the periosteum in one and two week specimens in the control groups without HBOT, there were numerous chondroblasts and rarely osteoblasts that contain well-developed intra-cytoplasmic organelles (Figure 5). Among these, the granular endoplasmic reticulum was prominent and golgi apparatus were clearly visible. The chondroblasts were positioned closely, leaving limited intercellular space which also contains dispersed collagen fibrils. In four weeks, osteoblasts with reactive appearance were abundant and the collagen fibrils had became more organized. In B-TCP groups, the general ultrastructural appearance resembles to that of the controls. In addition, it was noted that in some areas the residual graft material had came in contact with the periosteum and the periosteal cells had cytoplasmic process protruded through the bone graft. On the contrary, the ultrastructural investigation of CPCBB groups revealed evidences of severe degeneration both in the intra and extra cellular regions. At one week, normal appearances of the chondroblasts were observed to be altered and these cells also contained degenerated intracellular components. In two and four week specimens, the osteoblast mitochondrion had also lost their usual shape and there were empty intracellular spaces that contain no visible organelles, indicating a vacuolar degeneration process. Moreover, the endoplasmic reticulum membranes were swollen and the nuclei were pyknotic. The collagen fibrils were scarce and they presented a dispersed and disorganized structure.


The influence of hyperbaric oxygen treatment on the healing of experimental defects filled with different bone graft substitutes.

Sirin Y, Olgac V, Dogru-Abbasoglu S, Tapul L, Aktas S, Soley S - Int J Med Sci (2011)

The ultrastructural appearance of two periosteal osteoblast cells with well developed intracytoplasmic organelles in the control group without HBOT at one week time point ( TEM ×6000) (N; Nucleus, Ger; Granular endoplasmic reticulum, Mi; Mitochondrion; Cf; Collagen Fibrils).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3039227&req=5

Figure 5: The ultrastructural appearance of two periosteal osteoblast cells with well developed intracytoplasmic organelles in the control group without HBOT at one week time point ( TEM ×6000) (N; Nucleus, Ger; Granular endoplasmic reticulum, Mi; Mitochondrion; Cf; Collagen Fibrils).
Mentions: In the ultrastructural evaluation of the periosteum in one and two week specimens in the control groups without HBOT, there were numerous chondroblasts and rarely osteoblasts that contain well-developed intra-cytoplasmic organelles (Figure 5). Among these, the granular endoplasmic reticulum was prominent and golgi apparatus were clearly visible. The chondroblasts were positioned closely, leaving limited intercellular space which also contains dispersed collagen fibrils. In four weeks, osteoblasts with reactive appearance were abundant and the collagen fibrils had became more organized. In B-TCP groups, the general ultrastructural appearance resembles to that of the controls. In addition, it was noted that in some areas the residual graft material had came in contact with the periosteum and the periosteal cells had cytoplasmic process protruded through the bone graft. On the contrary, the ultrastructural investigation of CPCBB groups revealed evidences of severe degeneration both in the intra and extra cellular regions. At one week, normal appearances of the chondroblasts were observed to be altered and these cells also contained degenerated intracellular components. In two and four week specimens, the osteoblast mitochondrion had also lost their usual shape and there were empty intracellular spaces that contain no visible organelles, indicating a vacuolar degeneration process. Moreover, the endoplasmic reticulum membranes were swollen and the nuclei were pyknotic. The collagen fibrils were scarce and they presented a dispersed and disorganized structure.

Bottom Line: To assess potential effects of hyperbaric oxygen (HBOT) on artificial bone grafts, β - Tricalcium phosphate (β-TCP) and calcium phosphate coated bovine bone (CPCBB) substitutes were applied to standard bone defects in rat tibiae.The healing of defects filled with CPCBB was similar to the controls and it did not respond to HBOT.These findings suggested that the HBOT had beneficial effects on the healing of unfilled bone defects and those filled with β-TCP bone substitute but not with CPCBB, indicating a material-specific influence pattern of HBOT.

View Article: PubMed Central - PubMed

Affiliation: Istanbul University, Faculty of Dentistry, Department of Oral Surgery, Istanbul, Turkey. ysirin@istanbul.edu.tr

ABSTRACT
To assess potential effects of hyperbaric oxygen (HBOT) on artificial bone grafts, β - Tricalcium phosphate (β-TCP) and calcium phosphate coated bovine bone (CPCBB) substitutes were applied to standard bone defects in rat tibiae. The control defects were left empty. Half of the animals received 60 minutes of 2.4 atmosphere absolute (ATA) of HBOT. Rats were sacrificed at one, two and four weeks. Bone healing was assessed histologically and histomorphometrically using light microscopy. The periosteum over the bone defects was examined ultrastructurally. Cardiac blood was collected to determine the serum osteocalcin levels. The HBOT increased new bone formation in the unfilled controls and β-TCP groups and significantly decreased cartilage matrix and fibrous tissue formations in all groups. Active osteoblasts and highly organized collagen fibrils were prominent in the periosteum of β-TCP and control groups. Serum osteocalcin levels also increased with HBOT. The healing of defects filled with CPCBB was similar to the controls and it did not respond to HBOT. These findings suggested that the HBOT had beneficial effects on the healing of unfilled bone defects and those filled with β-TCP bone substitute but not with CPCBB, indicating a material-specific influence pattern of HBOT.

Show MeSH
Related in: MedlinePlus