Limits...
The influence of hyperbaric oxygen treatment on the healing of experimental defects filled with different bone graft substitutes.

Sirin Y, Olgac V, Dogru-Abbasoglu S, Tapul L, Aktas S, Soley S - Int J Med Sci (2011)

Bottom Line: To assess potential effects of hyperbaric oxygen (HBOT) on artificial bone grafts, β - Tricalcium phosphate (β-TCP) and calcium phosphate coated bovine bone (CPCBB) substitutes were applied to standard bone defects in rat tibiae.The healing of defects filled with CPCBB was similar to the controls and it did not respond to HBOT.These findings suggested that the HBOT had beneficial effects on the healing of unfilled bone defects and those filled with β-TCP bone substitute but not with CPCBB, indicating a material-specific influence pattern of HBOT.

View Article: PubMed Central - PubMed

Affiliation: Istanbul University, Faculty of Dentistry, Department of Oral Surgery, Istanbul, Turkey. ysirin@istanbul.edu.tr

ABSTRACT
To assess potential effects of hyperbaric oxygen (HBOT) on artificial bone grafts, β - Tricalcium phosphate (β-TCP) and calcium phosphate coated bovine bone (CPCBB) substitutes were applied to standard bone defects in rat tibiae. The control defects were left empty. Half of the animals received 60 minutes of 2.4 atmosphere absolute (ATA) of HBOT. Rats were sacrificed at one, two and four weeks. Bone healing was assessed histologically and histomorphometrically using light microscopy. The periosteum over the bone defects was examined ultrastructurally. Cardiac blood was collected to determine the serum osteocalcin levels. The HBOT increased new bone formation in the unfilled controls and β-TCP groups and significantly decreased cartilage matrix and fibrous tissue formations in all groups. Active osteoblasts and highly organized collagen fibrils were prominent in the periosteum of β-TCP and control groups. Serum osteocalcin levels also increased with HBOT. The healing of defects filled with CPCBB was similar to the controls and it did not respond to HBOT. These findings suggested that the HBOT had beneficial effects on the healing of unfilled bone defects and those filled with β-TCP bone substitute but not with CPCBB, indicating a material-specific influence pattern of HBOT.

Show MeSH

Related in: MedlinePlus

(a) Endochondral bone formation characterized by abundant cartilage matrix in the histological slide of the control group without HBOT at one week time point (H&E×100). (b) The histological slide of the control group which received HBOT at one week time point, the new bone growth and blood vessel formations (arrows) are clearly visible (H&E×250). (c) Histological appearance of the CPCBB group without HBOT at one week time point, note the arrows showing new bone trabeculae around the bone graft (H&E×40) (Cm; Cartilage matrix, Nbf; New bone formation, Gm; Graft material). (d) Light micrography of the β-TCP group without HBOT taken at two week time point (H&E ×100).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3039227&req=5

Figure 1: (a) Endochondral bone formation characterized by abundant cartilage matrix in the histological slide of the control group without HBOT at one week time point (H&E×100). (b) The histological slide of the control group which received HBOT at one week time point, the new bone growth and blood vessel formations (arrows) are clearly visible (H&E×250). (c) Histological appearance of the CPCBB group without HBOT at one week time point, note the arrows showing new bone trabeculae around the bone graft (H&E×40) (Cm; Cartilage matrix, Nbf; New bone formation, Gm; Graft material). (d) Light micrography of the β-TCP group without HBOT taken at two week time point (H&E ×100).

Mentions: In groups which did not receive HBOT, cartilage matrix formation was dominant both in control (Figure 1a) and in grafted defects. New bone formation was observed to start from the defect margins and extended through the center. At one week, small necrotic areas, mild inflammatory cell infiltration and scarce new vessel formation were common findings in all groups. It was found that both materials initiated foreign body reactions; however, this was more prominent for β - TCP. There were also fibrous tissue gaps between the graft particles of the same material. At two weeks, numerous new bone trabeculae were observed in the fibrous connective tissue, nearly occupying the entire defects in the control group. There was also few scattered cartilage tissue and new vessel formations. These observations were also visible around the bone grafts in the experimental defects. Nevertheless, newly formed bone was more prominent in the CPCBB groups than the β - TCP filled defects. Mild but apparent foreign body reactions were still present for both graft materials. At four weeks, all defects in the control groups were almost filled with new bone tissue in spite of the grafted sites. In β - TCP groups, the residual bone graft particles were surrounded by a combination of newly formed bone and cartilage tissue. The new bone formation in the defects of the CPCBB group was more prominent when compared to the β - TCP.


The influence of hyperbaric oxygen treatment on the healing of experimental defects filled with different bone graft substitutes.

Sirin Y, Olgac V, Dogru-Abbasoglu S, Tapul L, Aktas S, Soley S - Int J Med Sci (2011)

(a) Endochondral bone formation characterized by abundant cartilage matrix in the histological slide of the control group without HBOT at one week time point (H&E×100). (b) The histological slide of the control group which received HBOT at one week time point, the new bone growth and blood vessel formations (arrows) are clearly visible (H&E×250). (c) Histological appearance of the CPCBB group without HBOT at one week time point, note the arrows showing new bone trabeculae around the bone graft (H&E×40) (Cm; Cartilage matrix, Nbf; New bone formation, Gm; Graft material). (d) Light micrography of the β-TCP group without HBOT taken at two week time point (H&E ×100).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3039227&req=5

Figure 1: (a) Endochondral bone formation characterized by abundant cartilage matrix in the histological slide of the control group without HBOT at one week time point (H&E×100). (b) The histological slide of the control group which received HBOT at one week time point, the new bone growth and blood vessel formations (arrows) are clearly visible (H&E×250). (c) Histological appearance of the CPCBB group without HBOT at one week time point, note the arrows showing new bone trabeculae around the bone graft (H&E×40) (Cm; Cartilage matrix, Nbf; New bone formation, Gm; Graft material). (d) Light micrography of the β-TCP group without HBOT taken at two week time point (H&E ×100).
Mentions: In groups which did not receive HBOT, cartilage matrix formation was dominant both in control (Figure 1a) and in grafted defects. New bone formation was observed to start from the defect margins and extended through the center. At one week, small necrotic areas, mild inflammatory cell infiltration and scarce new vessel formation were common findings in all groups. It was found that both materials initiated foreign body reactions; however, this was more prominent for β - TCP. There were also fibrous tissue gaps between the graft particles of the same material. At two weeks, numerous new bone trabeculae were observed in the fibrous connective tissue, nearly occupying the entire defects in the control group. There was also few scattered cartilage tissue and new vessel formations. These observations were also visible around the bone grafts in the experimental defects. Nevertheless, newly formed bone was more prominent in the CPCBB groups than the β - TCP filled defects. Mild but apparent foreign body reactions were still present for both graft materials. At four weeks, all defects in the control groups were almost filled with new bone tissue in spite of the grafted sites. In β - TCP groups, the residual bone graft particles were surrounded by a combination of newly formed bone and cartilage tissue. The new bone formation in the defects of the CPCBB group was more prominent when compared to the β - TCP.

Bottom Line: To assess potential effects of hyperbaric oxygen (HBOT) on artificial bone grafts, β - Tricalcium phosphate (β-TCP) and calcium phosphate coated bovine bone (CPCBB) substitutes were applied to standard bone defects in rat tibiae.The healing of defects filled with CPCBB was similar to the controls and it did not respond to HBOT.These findings suggested that the HBOT had beneficial effects on the healing of unfilled bone defects and those filled with β-TCP bone substitute but not with CPCBB, indicating a material-specific influence pattern of HBOT.

View Article: PubMed Central - PubMed

Affiliation: Istanbul University, Faculty of Dentistry, Department of Oral Surgery, Istanbul, Turkey. ysirin@istanbul.edu.tr

ABSTRACT
To assess potential effects of hyperbaric oxygen (HBOT) on artificial bone grafts, β - Tricalcium phosphate (β-TCP) and calcium phosphate coated bovine bone (CPCBB) substitutes were applied to standard bone defects in rat tibiae. The control defects were left empty. Half of the animals received 60 minutes of 2.4 atmosphere absolute (ATA) of HBOT. Rats were sacrificed at one, two and four weeks. Bone healing was assessed histologically and histomorphometrically using light microscopy. The periosteum over the bone defects was examined ultrastructurally. Cardiac blood was collected to determine the serum osteocalcin levels. The HBOT increased new bone formation in the unfilled controls and β-TCP groups and significantly decreased cartilage matrix and fibrous tissue formations in all groups. Active osteoblasts and highly organized collagen fibrils were prominent in the periosteum of β-TCP and control groups. Serum osteocalcin levels also increased with HBOT. The healing of defects filled with CPCBB was similar to the controls and it did not respond to HBOT. These findings suggested that the HBOT had beneficial effects on the healing of unfilled bone defects and those filled with β-TCP bone substitute but not with CPCBB, indicating a material-specific influence pattern of HBOT.

Show MeSH
Related in: MedlinePlus