Limits...
Aesthetic response to color combinations: preference, harmony, and similarity.

Schloss KB, Palmer SE - Atten Percept Psychophys (2011)

Bottom Line: For example, some claim that harmony increases with hue similarity, whereas others claim that it decreases.Although pairs with highly contrastive hues are generally judged to be neither preferable nor harmonious, figural color preference ratings increase as hue contrast with the background increases.The present results thus refine and clarify some of the best-known and most contentious claims of color theorists.

View Article: PubMed Central - PubMed

Affiliation: University of California, Berkeley, CA 94720-1650, USA. kschloss@berkeley.edu

ABSTRACT
Previous studies of preference for and harmony of color combinations have produced confusing results. For example, some claim that harmony increases with hue similarity, whereas others claim that it decreases. We argue that such confusions are resolved by distinguishing among three types of judgments about color pairs: (1) preference for the pair as a whole, (2) harmony of the pair as a whole, and (3) preference for its figural color when viewed against its colored background. Empirical support for this distinction shows that pair preference and harmony both increase as hue similarity increases, but preference relies more strongly on component color preference and lightness contrast. Although pairs with highly contrastive hues are generally judged to be neither preferable nor harmonious, figural color preference ratings increase as hue contrast with the background increases. The present results thus refine and clarify some of the best-known and most contentious claims of color theorists.

Show MeSH

Related in: MedlinePlus

Preference ratings for each figural hue on each of the background hues as a function of figural hue (a) and residual figural color preference after accounting for figural preferences when rated on a neutral gray background (Palmer & Schloss, 2010) and pair preferences plotted as a function of figural hue (b). Error bars standard errors of the means (SEM)
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3037488&req=5

Fig12: Preference ratings for each figural hue on each of the background hues as a function of figural hue (a) and residual figural color preference after accounting for figural preferences when rated on a neutral gray background (Palmer & Schloss, 2010) and pair preferences plotted as a function of figural hue (b). Error bars standard errors of the means (SEM)

Mentions: Figure 12a plots the preferences for figural hues on different colored backgrounds as a function of background hue. This pattern is somewhat similar to the pair preferences presented in Fig. 2a (r = +.54) but is also clearly quite different in that the ground color curves do not peak when the figural color has the same hue, as they do in Fig. 2a. When figural preferences for each of the 32 figural colors (averaged over backgrounds) were compared with pair preferences for the same figural colors within figure-ground pairs (also averaged over backgrounds), there was a strong correlation (r = +.74), but it was not as strong as preferences for the same 32 figural colors when viewed against a neutral gray background (Palmer & Schloss, 2010) (r = +.87). Indeed, when these two correlations are calculated separately for each individual participant and compared statistically, correlations between figural color preference on differently colored backgrounds were reliably more closely related to figural color preferences on a neutral gray background than to pair preferences in which that color is figural [t(47) = 4.64, p < .001]. This finding strongly suggests that the observers in Experiment 4 were indeed rating how much they preferred the figural colors in the present task rather than how much they liked the figure-ground pairs as wholes. The same data, plotted as a function of figural hue angle in CIELAB color space, can be found in the Supplementary Material (Fig. S13A).Fig. 12


Aesthetic response to color combinations: preference, harmony, and similarity.

Schloss KB, Palmer SE - Atten Percept Psychophys (2011)

Preference ratings for each figural hue on each of the background hues as a function of figural hue (a) and residual figural color preference after accounting for figural preferences when rated on a neutral gray background (Palmer & Schloss, 2010) and pair preferences plotted as a function of figural hue (b). Error bars standard errors of the means (SEM)
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3037488&req=5

Fig12: Preference ratings for each figural hue on each of the background hues as a function of figural hue (a) and residual figural color preference after accounting for figural preferences when rated on a neutral gray background (Palmer & Schloss, 2010) and pair preferences plotted as a function of figural hue (b). Error bars standard errors of the means (SEM)
Mentions: Figure 12a plots the preferences for figural hues on different colored backgrounds as a function of background hue. This pattern is somewhat similar to the pair preferences presented in Fig. 2a (r = +.54) but is also clearly quite different in that the ground color curves do not peak when the figural color has the same hue, as they do in Fig. 2a. When figural preferences for each of the 32 figural colors (averaged over backgrounds) were compared with pair preferences for the same figural colors within figure-ground pairs (also averaged over backgrounds), there was a strong correlation (r = +.74), but it was not as strong as preferences for the same 32 figural colors when viewed against a neutral gray background (Palmer & Schloss, 2010) (r = +.87). Indeed, when these two correlations are calculated separately for each individual participant and compared statistically, correlations between figural color preference on differently colored backgrounds were reliably more closely related to figural color preferences on a neutral gray background than to pair preferences in which that color is figural [t(47) = 4.64, p < .001]. This finding strongly suggests that the observers in Experiment 4 were indeed rating how much they preferred the figural colors in the present task rather than how much they liked the figure-ground pairs as wholes. The same data, plotted as a function of figural hue angle in CIELAB color space, can be found in the Supplementary Material (Fig. S13A).Fig. 12

Bottom Line: For example, some claim that harmony increases with hue similarity, whereas others claim that it decreases.Although pairs with highly contrastive hues are generally judged to be neither preferable nor harmonious, figural color preference ratings increase as hue contrast with the background increases.The present results thus refine and clarify some of the best-known and most contentious claims of color theorists.

View Article: PubMed Central - PubMed

Affiliation: University of California, Berkeley, CA 94720-1650, USA. kschloss@berkeley.edu

ABSTRACT
Previous studies of preference for and harmony of color combinations have produced confusing results. For example, some claim that harmony increases with hue similarity, whereas others claim that it decreases. We argue that such confusions are resolved by distinguishing among three types of judgments about color pairs: (1) preference for the pair as a whole, (2) harmony of the pair as a whole, and (3) preference for its figural color when viewed against its colored background. Empirical support for this distinction shows that pair preference and harmony both increase as hue similarity increases, but preference relies more strongly on component color preference and lightness contrast. Although pairs with highly contrastive hues are generally judged to be neither preferable nor harmonious, figural color preference ratings increase as hue contrast with the background increases. The present results thus refine and clarify some of the best-known and most contentious claims of color theorists.

Show MeSH
Related in: MedlinePlus