Limits...
Frontal-subcortical protein expression following prenatal exposure to maternal inflammation.

Deng MY, Lam S, Meyer U, Feldon J, Li Q, Wei R, Luk L, Chua SE, Sham P, Wang Y, McAlonan GM - PLoS ONE (2011)

Bottom Line: Such conditions are associated with alterations in fronto-subcortical circuits, but their molecular basis is far from clear.This data fits with emerging evidence for disruption of critical converging intracellular pathways involving MAPK pathways in neurodevelopmental conditions and it shows considerable overlap with protein pathways identified by genetic modeling and clinical post-mortem studies.This has implications for understanding causality and may offer potential biomarkers and novel treatment targets for neurodevelopmental conditions.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China.

ABSTRACT

Background: Maternal immune activation (MIA) during prenatal life is a risk factor for neurodevelopmental disorders including schizophrenia and autism. Such conditions are associated with alterations in fronto-subcortical circuits, but their molecular basis is far from clear.

Methodology/principal findings: Using two-dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry, with targeted western blot analyses for confirmation, we investigated the impact of MIA on the prefrontal and striatal proteome from an established MIA mouse model generated in C57B6 mice, by administering the viral analogue PolyI:C or saline vehicle (control) intravenously on gestation day (GD) 9. In striatum, 11 proteins were up-regulated and 4 proteins were down-regulated in the PolyI:C mice, while 10 proteins were up-regulated and 7 proteins down-regulated in prefrontal cortex (PFC). These were proteins involved in the mitogen-activated protein kinase (MAPK) signaling pathway, oxidation and auto-immune targets, including dual specificity mitogen-activated protein kinase kinase 1 (MEK), eukaryotic initiation factor (eIF) 4A-II, creatine kinase (CK)-B, L-lactate dehydrogenase (LDH)-B, WD repeat-containing protein and NADH dehydrogenase in the striatum; and guanine nucleotide-binding protein (G-protein), 14-3-3 protein, alpha-enolase, olfactory maker protein and heat shock proteins (HSP) 60, and 90-beta in the PFC.

Conclusions/significance: This data fits with emerging evidence for disruption of critical converging intracellular pathways involving MAPK pathways in neurodevelopmental conditions and it shows considerable overlap with protein pathways identified by genetic modeling and clinical post-mortem studies. This has implications for understanding causality and may offer potential biomarkers and novel treatment targets for neurodevelopmental conditions.

Show MeSH

Related in: MedlinePlus

Differential expression patterns of proteins-of-interest and their abundances relative to the internal standard in the BVA module.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3037372&req=5

pone-0016638-g001: Differential expression patterns of proteins-of-interest and their abundances relative to the internal standard in the BVA module.

Mentions: Total soluble brain proteins from CPu and PFC labeled with Cy3 or Cy5 fluorescent dyes, mixed to form random pairs on each 2D-DIGE gel, were evenly distributed across the pH 4–7 range and separated between 10 to 250 kDa on the 12% SDS-PAGE. For CPu, an average 1500 spots were detected in each image by DeCyder DIA module, and around 1300 spots included for further BVA module analysis after protein exclusion filters applied (Area<250; Max Peak<100; Max Volume<10,000; Max Slope>1.75). For PFC, around 1800 spots were detected and 1300 spots were included for BVA module with similar protein exclusion filters (Area<250; Max Peak<200; Max Volume<25,000; Max Slope>1.5). In BVA module, protein spots detected from each image were automatically matched to the master image which contained the most protein spots in an experiment and each protein's standardized abundance volume was calculated against the internal standard. The protein fold changes were of a similar order of magnitude to other studies which have adopted 2D-DIGE techniques [35]. In addition, protein spots were manually checked to exclude dust particles and other artifact before further statistical analysis. Independent Student t-tests compared protein expression between PolyI:C- treated mice and controls. According to the significance criteria above, 15 spots in CPu showed significant alteration in expression (p<0.05; presented >75% images) in PolyI:C-treated mice compared to the control group. Of these 15 spots, 11 spots showed up-regulation and 4 spots showed down-regulation. Table 1 lists the 9 proteins identified by mass spectrometry. In PFC, compared to control group, 18 spots with significant alteration in expression were detected (p<0.05; presented in >75% images) in PolyI:C-treated mice,of which 10 spots were detected as up-regulated and 8 spots down-regulated. Nine protein spots were identified using mass spectrometry (Table 2), including olfactory marker protein; alpha-enolase protein; Guanine nucleotide-binding protein (G-protein); protein kinase C inhibitor protein 1 (KCIP-1) and heat shock proteins. Figure 1 shows representative expression patterns.


Frontal-subcortical protein expression following prenatal exposure to maternal inflammation.

Deng MY, Lam S, Meyer U, Feldon J, Li Q, Wei R, Luk L, Chua SE, Sham P, Wang Y, McAlonan GM - PLoS ONE (2011)

Differential expression patterns of proteins-of-interest and their abundances relative to the internal standard in the BVA module.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3037372&req=5

pone-0016638-g001: Differential expression patterns of proteins-of-interest and their abundances relative to the internal standard in the BVA module.
Mentions: Total soluble brain proteins from CPu and PFC labeled with Cy3 or Cy5 fluorescent dyes, mixed to form random pairs on each 2D-DIGE gel, were evenly distributed across the pH 4–7 range and separated between 10 to 250 kDa on the 12% SDS-PAGE. For CPu, an average 1500 spots were detected in each image by DeCyder DIA module, and around 1300 spots included for further BVA module analysis after protein exclusion filters applied (Area<250; Max Peak<100; Max Volume<10,000; Max Slope>1.75). For PFC, around 1800 spots were detected and 1300 spots were included for BVA module with similar protein exclusion filters (Area<250; Max Peak<200; Max Volume<25,000; Max Slope>1.5). In BVA module, protein spots detected from each image were automatically matched to the master image which contained the most protein spots in an experiment and each protein's standardized abundance volume was calculated against the internal standard. The protein fold changes were of a similar order of magnitude to other studies which have adopted 2D-DIGE techniques [35]. In addition, protein spots were manually checked to exclude dust particles and other artifact before further statistical analysis. Independent Student t-tests compared protein expression between PolyI:C- treated mice and controls. According to the significance criteria above, 15 spots in CPu showed significant alteration in expression (p<0.05; presented >75% images) in PolyI:C-treated mice compared to the control group. Of these 15 spots, 11 spots showed up-regulation and 4 spots showed down-regulation. Table 1 lists the 9 proteins identified by mass spectrometry. In PFC, compared to control group, 18 spots with significant alteration in expression were detected (p<0.05; presented in >75% images) in PolyI:C-treated mice,of which 10 spots were detected as up-regulated and 8 spots down-regulated. Nine protein spots were identified using mass spectrometry (Table 2), including olfactory marker protein; alpha-enolase protein; Guanine nucleotide-binding protein (G-protein); protein kinase C inhibitor protein 1 (KCIP-1) and heat shock proteins. Figure 1 shows representative expression patterns.

Bottom Line: Such conditions are associated with alterations in fronto-subcortical circuits, but their molecular basis is far from clear.This data fits with emerging evidence for disruption of critical converging intracellular pathways involving MAPK pathways in neurodevelopmental conditions and it shows considerable overlap with protein pathways identified by genetic modeling and clinical post-mortem studies.This has implications for understanding causality and may offer potential biomarkers and novel treatment targets for neurodevelopmental conditions.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China.

ABSTRACT

Background: Maternal immune activation (MIA) during prenatal life is a risk factor for neurodevelopmental disorders including schizophrenia and autism. Such conditions are associated with alterations in fronto-subcortical circuits, but their molecular basis is far from clear.

Methodology/principal findings: Using two-dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry, with targeted western blot analyses for confirmation, we investigated the impact of MIA on the prefrontal and striatal proteome from an established MIA mouse model generated in C57B6 mice, by administering the viral analogue PolyI:C or saline vehicle (control) intravenously on gestation day (GD) 9. In striatum, 11 proteins were up-regulated and 4 proteins were down-regulated in the PolyI:C mice, while 10 proteins were up-regulated and 7 proteins down-regulated in prefrontal cortex (PFC). These were proteins involved in the mitogen-activated protein kinase (MAPK) signaling pathway, oxidation and auto-immune targets, including dual specificity mitogen-activated protein kinase kinase 1 (MEK), eukaryotic initiation factor (eIF) 4A-II, creatine kinase (CK)-B, L-lactate dehydrogenase (LDH)-B, WD repeat-containing protein and NADH dehydrogenase in the striatum; and guanine nucleotide-binding protein (G-protein), 14-3-3 protein, alpha-enolase, olfactory maker protein and heat shock proteins (HSP) 60, and 90-beta in the PFC.

Conclusions/significance: This data fits with emerging evidence for disruption of critical converging intracellular pathways involving MAPK pathways in neurodevelopmental conditions and it shows considerable overlap with protein pathways identified by genetic modeling and clinical post-mortem studies. This has implications for understanding causality and may offer potential biomarkers and novel treatment targets for neurodevelopmental conditions.

Show MeSH
Related in: MedlinePlus