Limits...
Anti-proliferative effects of raw and steamed extracts of Panax notoginseng and its ginsenoside constituents on human liver cancer cells.

Toh DF, Patel DN, Chan EC, Teo A, Neo SY, Koh HL - Chin Med (2011)

Bottom Line: Panax notoginseng is a potential source of anticancer compounds.Samples of powdered raw P. notoginseng roots were steamed for various durations.Extracts of the raw and steamed samples were subjected to ultra-high pressure liquid chromatography/mass spectrometry (UHPLC-MS) analysis for chemical profiling.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Singapore. neo_soek_ying@sics.a-star.edu.sg.

ABSTRACT

Background: Panax notoginseng is a potential source of anticancer compounds. This study aims to investigate the effects of steaming on the chemical profile of P. notoginseng and the anti-proliferative effects of P. notoginseng on liver cancer cells.

Methods: Samples of powdered raw P. notoginseng roots were steamed for various durations. Extracts of the raw and steamed samples were subjected to ultra-high pressure liquid chromatography/mass spectrometry (UHPLC-MS) analysis for chemical profiling. The anti-proliferative effects on three human liver cancer cells, namely SNU449, SNU182 and HepG2, were evaluated using colorimetric WST-1 assay.

Results: Steaming changed chromatographic and pharmacological profiles of P. notoginseng, causing differences in activities such as inhibition of cancer growth. Steamed P. notoginseng exhibited greater anti-proliferative effects against liver cancer cells (SNU449, SNU182 and HepG2) than its raw form; steaming up to 24 hours increased bioactivities. Steaming increased the concentrations of ginsenoside Rh2, Rk1, Rk3 and 20S-Rg3 and enhanced growth inhibition of liver cancer cells.

Conclusion: Steaming changes the chemical profile as well as anti-cancer biological activities of P. notoginseng. Steamed P. notoginseng contains potential compounds for the treatment of liver cancer.

No MeSH data available.


Related in: MedlinePlus

Anti-proliferative effects of the ginsenosides from P. notoginseng. In vitro anti-proliferative effects of ginsenosides in the raw (A) and steamed (B) Panax notoginseng extracts in SNU449 (black square), SNU182 (white square) and HepG2 (grey square) human liver cancer cells. The cells were exposed to these ginsenosides at 250 μg/ml for 48 hours (SNU449 and SNU182) or 72 hours (HepG2) and assayed by WST-1. Plot shows the average percentage cell viability ± standard deviation as compared to vehicle control (100 ± 4.5% viability) of three independent experiments conducted in triplicates each. Statistical significance was considered when P < 0.05 (*) and P < 0.001 (**). (A) Ginsenosides Rg1, Rb1, Re, Rd and notoginsenoside R1 in the raw P. notoginseng were screened. Most of the ginsenosides in the raw P. notoginseng showed significant anti-proliferative activities against SNU449 and HepG2 but not SNU182. *1: P = 0.007; *2: P = 0.012; *3: P = 0.016; *4: P = 0.010; *5: P = 0.002; *6: P = 0.002; *7: P = 0.010; *8: P = 0.048. (B) Ginsenosides Rk3, 20R-Rh1, Rh2, 20S-Rg3, Rk1, 20S-Rh1 in the steamed P. notoginseng were screened. Most of these ginsenosides showed significant anti-proliferative effects on SNU449, SNU182 and HepG2 with ginsenosides Rh2, Rk1, Rk3 and 20S-Rg3 being the more active ones. Overall, ginsenosides in the steamed P. notoginseng showed greater anti-proliferative activities than ginsenosides in the raw P. notoginseng. *9: P = 0.017; *10: P = 0.002; *11: P = 0.003; *12: P = 0.005
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3037355&req=5

Figure 4: Anti-proliferative effects of the ginsenosides from P. notoginseng. In vitro anti-proliferative effects of ginsenosides in the raw (A) and steamed (B) Panax notoginseng extracts in SNU449 (black square), SNU182 (white square) and HepG2 (grey square) human liver cancer cells. The cells were exposed to these ginsenosides at 250 μg/ml for 48 hours (SNU449 and SNU182) or 72 hours (HepG2) and assayed by WST-1. Plot shows the average percentage cell viability ± standard deviation as compared to vehicle control (100 ± 4.5% viability) of three independent experiments conducted in triplicates each. Statistical significance was considered when P < 0.05 (*) and P < 0.001 (**). (A) Ginsenosides Rg1, Rb1, Re, Rd and notoginsenoside R1 in the raw P. notoginseng were screened. Most of the ginsenosides in the raw P. notoginseng showed significant anti-proliferative activities against SNU449 and HepG2 but not SNU182. *1: P = 0.007; *2: P = 0.012; *3: P = 0.016; *4: P = 0.010; *5: P = 0.002; *6: P = 0.002; *7: P = 0.010; *8: P = 0.048. (B) Ginsenosides Rk3, 20R-Rh1, Rh2, 20S-Rg3, Rk1, 20S-Rh1 in the steamed P. notoginseng were screened. Most of these ginsenosides showed significant anti-proliferative effects on SNU449, SNU182 and HepG2 with ginsenosides Rh2, Rk1, Rk3 and 20S-Rg3 being the more active ones. Overall, ginsenosides in the steamed P. notoginseng showed greater anti-proliferative activities than ginsenosides in the raw P. notoginseng. *9: P = 0.017; *10: P = 0.002; *11: P = 0.003; *12: P = 0.005

Mentions: The ginsenosides in the raw P. notoginseng, namely Rg1, Rb1, Re, Rd and notoginsenoside R1, exerted different growth responses in all three cell lines (Figure 4A). At 0.25 mg/ml, all of them reduced cell growth by 20-30% in SNU449 cell (Figure 4A). In SNU182 cells, cell viability was not significantly affected by any of the ginsenosides. Ginsenoside Rg1, Re and notoginsenoside R1 exerted significant anti-proliferative effects, resulting in lowered cell viabilities of 65-85% in the HepG2 cell line.


Anti-proliferative effects of raw and steamed extracts of Panax notoginseng and its ginsenoside constituents on human liver cancer cells.

Toh DF, Patel DN, Chan EC, Teo A, Neo SY, Koh HL - Chin Med (2011)

Anti-proliferative effects of the ginsenosides from P. notoginseng. In vitro anti-proliferative effects of ginsenosides in the raw (A) and steamed (B) Panax notoginseng extracts in SNU449 (black square), SNU182 (white square) and HepG2 (grey square) human liver cancer cells. The cells were exposed to these ginsenosides at 250 μg/ml for 48 hours (SNU449 and SNU182) or 72 hours (HepG2) and assayed by WST-1. Plot shows the average percentage cell viability ± standard deviation as compared to vehicle control (100 ± 4.5% viability) of three independent experiments conducted in triplicates each. Statistical significance was considered when P < 0.05 (*) and P < 0.001 (**). (A) Ginsenosides Rg1, Rb1, Re, Rd and notoginsenoside R1 in the raw P. notoginseng were screened. Most of the ginsenosides in the raw P. notoginseng showed significant anti-proliferative activities against SNU449 and HepG2 but not SNU182. *1: P = 0.007; *2: P = 0.012; *3: P = 0.016; *4: P = 0.010; *5: P = 0.002; *6: P = 0.002; *7: P = 0.010; *8: P = 0.048. (B) Ginsenosides Rk3, 20R-Rh1, Rh2, 20S-Rg3, Rk1, 20S-Rh1 in the steamed P. notoginseng were screened. Most of these ginsenosides showed significant anti-proliferative effects on SNU449, SNU182 and HepG2 with ginsenosides Rh2, Rk1, Rk3 and 20S-Rg3 being the more active ones. Overall, ginsenosides in the steamed P. notoginseng showed greater anti-proliferative activities than ginsenosides in the raw P. notoginseng. *9: P = 0.017; *10: P = 0.002; *11: P = 0.003; *12: P = 0.005
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3037355&req=5

Figure 4: Anti-proliferative effects of the ginsenosides from P. notoginseng. In vitro anti-proliferative effects of ginsenosides in the raw (A) and steamed (B) Panax notoginseng extracts in SNU449 (black square), SNU182 (white square) and HepG2 (grey square) human liver cancer cells. The cells were exposed to these ginsenosides at 250 μg/ml for 48 hours (SNU449 and SNU182) or 72 hours (HepG2) and assayed by WST-1. Plot shows the average percentage cell viability ± standard deviation as compared to vehicle control (100 ± 4.5% viability) of three independent experiments conducted in triplicates each. Statistical significance was considered when P < 0.05 (*) and P < 0.001 (**). (A) Ginsenosides Rg1, Rb1, Re, Rd and notoginsenoside R1 in the raw P. notoginseng were screened. Most of the ginsenosides in the raw P. notoginseng showed significant anti-proliferative activities against SNU449 and HepG2 but not SNU182. *1: P = 0.007; *2: P = 0.012; *3: P = 0.016; *4: P = 0.010; *5: P = 0.002; *6: P = 0.002; *7: P = 0.010; *8: P = 0.048. (B) Ginsenosides Rk3, 20R-Rh1, Rh2, 20S-Rg3, Rk1, 20S-Rh1 in the steamed P. notoginseng were screened. Most of these ginsenosides showed significant anti-proliferative effects on SNU449, SNU182 and HepG2 with ginsenosides Rh2, Rk1, Rk3 and 20S-Rg3 being the more active ones. Overall, ginsenosides in the steamed P. notoginseng showed greater anti-proliferative activities than ginsenosides in the raw P. notoginseng. *9: P = 0.017; *10: P = 0.002; *11: P = 0.003; *12: P = 0.005
Mentions: The ginsenosides in the raw P. notoginseng, namely Rg1, Rb1, Re, Rd and notoginsenoside R1, exerted different growth responses in all three cell lines (Figure 4A). At 0.25 mg/ml, all of them reduced cell growth by 20-30% in SNU449 cell (Figure 4A). In SNU182 cells, cell viability was not significantly affected by any of the ginsenosides. Ginsenoside Rg1, Re and notoginsenoside R1 exerted significant anti-proliferative effects, resulting in lowered cell viabilities of 65-85% in the HepG2 cell line.

Bottom Line: Panax notoginseng is a potential source of anticancer compounds.Samples of powdered raw P. notoginseng roots were steamed for various durations.Extracts of the raw and steamed samples were subjected to ultra-high pressure liquid chromatography/mass spectrometry (UHPLC-MS) analysis for chemical profiling.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Singapore. neo_soek_ying@sics.a-star.edu.sg.

ABSTRACT

Background: Panax notoginseng is a potential source of anticancer compounds. This study aims to investigate the effects of steaming on the chemical profile of P. notoginseng and the anti-proliferative effects of P. notoginseng on liver cancer cells.

Methods: Samples of powdered raw P. notoginseng roots were steamed for various durations. Extracts of the raw and steamed samples were subjected to ultra-high pressure liquid chromatography/mass spectrometry (UHPLC-MS) analysis for chemical profiling. The anti-proliferative effects on three human liver cancer cells, namely SNU449, SNU182 and HepG2, were evaluated using colorimetric WST-1 assay.

Results: Steaming changed chromatographic and pharmacological profiles of P. notoginseng, causing differences in activities such as inhibition of cancer growth. Steamed P. notoginseng exhibited greater anti-proliferative effects against liver cancer cells (SNU449, SNU182 and HepG2) than its raw form; steaming up to 24 hours increased bioactivities. Steaming increased the concentrations of ginsenoside Rh2, Rk1, Rk3 and 20S-Rg3 and enhanced growth inhibition of liver cancer cells.

Conclusion: Steaming changes the chemical profile as well as anti-cancer biological activities of P. notoginseng. Steamed P. notoginseng contains potential compounds for the treatment of liver cancer.

No MeSH data available.


Related in: MedlinePlus