Limits...
Finding a cure for HIV: will it ever be achievable?

Lewin SR, Evans VA, Elliott JH, Spire B, Chomont N - J Int AIDS Soc (2011)

Bottom Line: In latent HIV infection, the virus is able to integrate into the host cell genome, but does not proceed to active replication.Some potential and promising approaches that may reduce the latent reservoir include very early initiation of cART and the use of agents that could potentially reverse latent infection.Agents that reverse latent infection will promote viral production; however, simultaneous administration of cART will prevent subsequent rounds of viral replication.Such drugs as histone deacetylase inhibitors, currently used and licensed for the treatment of some cancers, or activating latently infected resting cells with cytokines, such as IL-7 or prostratin, show promising results in reversing latency in vitro when used either alone or in combination.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Medicine, Monash University, Melbourne, Australia. s.lewin@alfred.org.au

ABSTRACT
Combination antiretroviral therapy (cART) has led to a major reduction in HIV-related mortality and morbidity. However, HIV still cannot be cured. With the absence of an effective prophylactic or therapeutic vaccine, increasing numbers of infected people, emerging new toxicities secondary to cART and the need for life-long treatment, there is now a real urgency to find a cure for HIV.There are currently multiple barriers to curing HIV. The most significant barrier is the establishment of a latent or "silent" infection in resting CD4+ T cells. In latent HIV infection, the virus is able to integrate into the host cell genome, but does not proceed to active replication. As a consequence, antiviral agents, as well as the immune system, are unable to eliminate these long-lived, latently infected cells. Reactivation of latently infected resting CD4+ T cells can then re-establish infection once cART is stopped. Other significant barriers to cure include residual viral replication in patients receiving cART, even when the virus is not detectable by conventional assays. In addition, HIV can be sequestered in anatomical reservoirs, such as the brain, gastrointestinal tract and genitourinary tract.Achieving either a functional cure (long-term control of HIV in the absence of cART) or a sterilizing cure (elimination of all HIV-infected cells) remains a major challenge. Several studies have now demonstrated that treatment intensification appears to have little impact on latent reservoirs. Some potential and promising approaches that may reduce the latent reservoir include very early initiation of cART and the use of agents that could potentially reverse latent infection.Agents that reverse latent infection will promote viral production; however, simultaneous administration of cART will prevent subsequent rounds of viral replication. Such drugs as histone deacetylase inhibitors, currently used and licensed for the treatment of some cancers, or activating latently infected resting cells with cytokines, such as IL-7 or prostratin, show promising results in reversing latency in vitro when used either alone or in combination. In order to move forward toward clinical trials that target eradication, there needs to be careful consideration of the risks and benefits of these approaches, agreement on the most informative endpoints for eradication studies and greater engagement of the infected community.

Show MeSH

Related in: MedlinePlus

HIV latency and infection of resting memory CD4+ T cells. (A) In activated CD4+ T cells the virus life cycle is efficient, with rapid integration, virion production and subsequent death of the infected cells. (B) Latent infection can be established in CD4+ resting memory T cells following incubation with multiple chemokines [36,37]. (C) Alternatively, latently infected cells may arise following the reversion of an infected activated cell to a resting state [38-40].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3037295&req=5

Figure 1: HIV latency and infection of resting memory CD4+ T cells. (A) In activated CD4+ T cells the virus life cycle is efficient, with rapid integration, virion production and subsequent death of the infected cells. (B) Latent infection can be established in CD4+ resting memory T cells following incubation with multiple chemokines [36,37]. (C) Alternatively, latently infected cells may arise following the reversion of an infected activated cell to a resting state [38-40].

Mentions: In vitro, our group has clearly demonstrated that latent infection can be established in CD4+ resting memory T cells, following incubation with multiple chemokines that bind to the chemokine receptors highly expressed on resting CD4+ T cells [36,37]. Studies such as this support the hypothesis that latency can result from direct infection of resting memory CD4+ T cells, possibly as a result of exposure to soluble factors found in lymphoid tissues. An alternative possibility for infection of resting CD4+ T cells is the reversion of an infected, activated cell to a resting state, which has also been demonstrated in vitro [38-40] (Figure 1).


Finding a cure for HIV: will it ever be achievable?

Lewin SR, Evans VA, Elliott JH, Spire B, Chomont N - J Int AIDS Soc (2011)

HIV latency and infection of resting memory CD4+ T cells. (A) In activated CD4+ T cells the virus life cycle is efficient, with rapid integration, virion production and subsequent death of the infected cells. (B) Latent infection can be established in CD4+ resting memory T cells following incubation with multiple chemokines [36,37]. (C) Alternatively, latently infected cells may arise following the reversion of an infected activated cell to a resting state [38-40].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3037295&req=5

Figure 1: HIV latency and infection of resting memory CD4+ T cells. (A) In activated CD4+ T cells the virus life cycle is efficient, with rapid integration, virion production and subsequent death of the infected cells. (B) Latent infection can be established in CD4+ resting memory T cells following incubation with multiple chemokines [36,37]. (C) Alternatively, latently infected cells may arise following the reversion of an infected activated cell to a resting state [38-40].
Mentions: In vitro, our group has clearly demonstrated that latent infection can be established in CD4+ resting memory T cells, following incubation with multiple chemokines that bind to the chemokine receptors highly expressed on resting CD4+ T cells [36,37]. Studies such as this support the hypothesis that latency can result from direct infection of resting memory CD4+ T cells, possibly as a result of exposure to soluble factors found in lymphoid tissues. An alternative possibility for infection of resting CD4+ T cells is the reversion of an infected, activated cell to a resting state, which has also been demonstrated in vitro [38-40] (Figure 1).

Bottom Line: In latent HIV infection, the virus is able to integrate into the host cell genome, but does not proceed to active replication.Some potential and promising approaches that may reduce the latent reservoir include very early initiation of cART and the use of agents that could potentially reverse latent infection.Agents that reverse latent infection will promote viral production; however, simultaneous administration of cART will prevent subsequent rounds of viral replication.Such drugs as histone deacetylase inhibitors, currently used and licensed for the treatment of some cancers, or activating latently infected resting cells with cytokines, such as IL-7 or prostratin, show promising results in reversing latency in vitro when used either alone or in combination.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Medicine, Monash University, Melbourne, Australia. s.lewin@alfred.org.au

ABSTRACT
Combination antiretroviral therapy (cART) has led to a major reduction in HIV-related mortality and morbidity. However, HIV still cannot be cured. With the absence of an effective prophylactic or therapeutic vaccine, increasing numbers of infected people, emerging new toxicities secondary to cART and the need for life-long treatment, there is now a real urgency to find a cure for HIV.There are currently multiple barriers to curing HIV. The most significant barrier is the establishment of a latent or "silent" infection in resting CD4+ T cells. In latent HIV infection, the virus is able to integrate into the host cell genome, but does not proceed to active replication. As a consequence, antiviral agents, as well as the immune system, are unable to eliminate these long-lived, latently infected cells. Reactivation of latently infected resting CD4+ T cells can then re-establish infection once cART is stopped. Other significant barriers to cure include residual viral replication in patients receiving cART, even when the virus is not detectable by conventional assays. In addition, HIV can be sequestered in anatomical reservoirs, such as the brain, gastrointestinal tract and genitourinary tract.Achieving either a functional cure (long-term control of HIV in the absence of cART) or a sterilizing cure (elimination of all HIV-infected cells) remains a major challenge. Several studies have now demonstrated that treatment intensification appears to have little impact on latent reservoirs. Some potential and promising approaches that may reduce the latent reservoir include very early initiation of cART and the use of agents that could potentially reverse latent infection.Agents that reverse latent infection will promote viral production; however, simultaneous administration of cART will prevent subsequent rounds of viral replication. Such drugs as histone deacetylase inhibitors, currently used and licensed for the treatment of some cancers, or activating latently infected resting cells with cytokines, such as IL-7 or prostratin, show promising results in reversing latency in vitro when used either alone or in combination. In order to move forward toward clinical trials that target eradication, there needs to be careful consideration of the risks and benefits of these approaches, agreement on the most informative endpoints for eradication studies and greater engagement of the infected community.

Show MeSH
Related in: MedlinePlus