Limits...
Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.

Ali MB, Howard S, Chen S, Wang Y, Yu O, Kovacs LG, Qiu W - BMC Plant Biol. (2011)

Bottom Line: The data showed that there were higher transcript levels of the genes encoding flavonoid-3'-O-hydroxylase (F3'H), flavonoid-3',5'-hydroxylase (F3'5'H), leucoanthocyanidin dioxygenase (LDOX), UDP-glucose:flavonoid 3'-O-glucosyltransferase (UFGT), anthocyanidin reductase (ANR), leucoanthocyanidin reductase (LAR) 1 and LAR2 in berry skin of Norton than in those of Cabernet Sauvignon.It was also found that the total amount of anthocyanins was markedly higher in Norton than in Cabernet Sauvignon berry skin at harvest, and five anthocyanin derivatives and three PA compounds exhibited distinctive accumulation patterns in Norton berry skin.These results reveal a unique pattern of the regulation of transcription and biosynthesis pathways underlying the viticultural and enological characteristics of Norton grape, and yield new insights into the understanding of the flavonoid pathway in non-vinifera grape varieties.

View Article: PubMed Central - HTML - PubMed

Affiliation: Center for Grapevine Biotechnology, William H. Darr School of Agriculture, Missouri State University, Mountain Grove, MO 65711, USA.

ABSTRACT

Background: The complex and dynamic changes during grape berry development have been studied in Vitis vinifera, but little is known about these processes in other Vitis species. The grape variety 'Norton', with a major portion of its genome derived from Vitis aestivalis, maintains high levels of malic acid and phenolic acids in the ripening berries in comparison with V. vinifera varieties such as Cabernet Sauvignon. Furthermore, Norton berries develop a remarkably high level of resistance to most fungal pathogens while Cabernet Sauvignon berries remain susceptible to those pathogens. The distinct characteristics of Norton and Cabernet Sauvignon merit a comprehensive analysis of transcriptional regulation and metabolite pathways.

Results: A microarray study was conducted on transcriptome changes of Norton berry skin during the period of 37 to 127 days after bloom, which represents berry developmental phases from herbaceous growth to full ripeness. Samples of six berry developmental stages were collected. Analysis of the microarray data revealed that a total of 3,352 probe sets exhibited significant differences at transcript levels, with two-fold changes between at least two developmental stages. Expression profiles of defense-related genes showed a dynamic modulation of nucleotide-binding site-leucine-rich repeat (NBS-LRR) resistance genes and pathogenesis-related (PR) genes during berry development. Transcript levels of PR-1 in Norton berry skin clearly increased during the ripening phase. As in other grapevines, genes of the phenylpropanoid pathway were up-regulated in Norton as the berry developed. The most noticeable was the steady increase of transcript levels of stilbene synthase genes. Transcriptional patterns of six MYB transcription factors and eleven structural genes of the flavonoid pathway and profiles of anthocyanins and proanthocyanidins (PAs) during berry skin development were analyzed comparatively in Norton and Cabernet Sauvignon. Transcriptional patterns of MYB5A and MYB5B were similar during berry development between the two varieties, but those of MYBPA1 and MYBPA2 were strikingly different, demonstrating that the general flavonoid pathways are regulated under different MYB factors. The data showed that there were higher transcript levels of the genes encoding flavonoid-3'-O-hydroxylase (F3'H), flavonoid-3',5'-hydroxylase (F3'5'H), leucoanthocyanidin dioxygenase (LDOX), UDP-glucose:flavonoid 3'-O-glucosyltransferase (UFGT), anthocyanidin reductase (ANR), leucoanthocyanidin reductase (LAR) 1 and LAR2 in berry skin of Norton than in those of Cabernet Sauvignon. It was also found that the total amount of anthocyanins was markedly higher in Norton than in Cabernet Sauvignon berry skin at harvest, and five anthocyanin derivatives and three PA compounds exhibited distinctive accumulation patterns in Norton berry skin.

Conclusions: This study provides an overview of the transcriptome changes and the flavonoid profiles in the berry skin of Norton, an important North American wine grape, during berry development. The steady increase of transcripts of PR-1 and stilbene synthase genes likely contributes to the developmentally regulated resistance during ripening of Norton berries. More studies are required to address the precise role of each stilbene synthase gene in berry development and disease resistance. Transcriptional regulation of MYBA1, MYBA2, MYB5A and MYBPA1 as well as expression levels of their putative targets F3'H, F3'5'H, LDOX, UFGT, ANR, LAR1, and LAR2 are highly correlated with the characteristic anthocyanin and PA profiles in Norton berry skin. These results reveal a unique pattern of the regulation of transcription and biosynthesis pathways underlying the viticultural and enological characteristics of Norton grape, and yield new insights into the understanding of the flavonoid pathway in non-vinifera grape varieties.

Show MeSH
Accumulation kinetics of the proanthocyanidins catechin, epicatechin, and epigallocatechin during V. vinifera 'Cabernet Sauvignon' (blue dashed line) and V. aestivalis 'Norton' (red solid line) berry skin development. Cabernet Sauvignon berry skin were collected at 49, 59 (véraison, blue arrow), 71, 90 and 112 days after bloom (DAB), and Norton berry skin at 66, 71 (véraison, red arrow), 85, 99 and 127 DAB. Bars indicate standard error of three biological replicates per sample.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3025947&req=5

Figure 5: Accumulation kinetics of the proanthocyanidins catechin, epicatechin, and epigallocatechin during V. vinifera 'Cabernet Sauvignon' (blue dashed line) and V. aestivalis 'Norton' (red solid line) berry skin development. Cabernet Sauvignon berry skin were collected at 49, 59 (véraison, blue arrow), 71, 90 and 112 days after bloom (DAB), and Norton berry skin at 66, 71 (véraison, red arrow), 85, 99 and 127 DAB. Bars indicate standard error of three biological replicates per sample.

Mentions: To match gene expression patterns with flavonoid profiles, we analyzed the accumulation of the flavan-3-ols catechin, epicatechin, epigallocatechin (EGC), and epicatechin gallate (ECG) in berry skin across seven developmental stages (Figure 5). Norton and Cabernet Sauvignon have comparative levels of catechin at 17 DAB. In Cabernet Sauvignon, catechin levels remained high until just after véraison, whereas in Norton, catechin dropped to the lowest levels at 71 DAB (véraison) and then rose until 127 DAB. Epicatechin was not detected in either variety until véraison, but was detectable in Norton at 85 and 99 DAB as well as in Cabernet Sauvignon post-véraison. EGC levels remained steady in Cabernet Sauvignon throughout berry development, but increased steadily in Norton until 127 DAB. ECG was detected only in Cabernet Sauvignon (data not shown).


Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.

Ali MB, Howard S, Chen S, Wang Y, Yu O, Kovacs LG, Qiu W - BMC Plant Biol. (2011)

Accumulation kinetics of the proanthocyanidins catechin, epicatechin, and epigallocatechin during V. vinifera 'Cabernet Sauvignon' (blue dashed line) and V. aestivalis 'Norton' (red solid line) berry skin development. Cabernet Sauvignon berry skin were collected at 49, 59 (véraison, blue arrow), 71, 90 and 112 days after bloom (DAB), and Norton berry skin at 66, 71 (véraison, red arrow), 85, 99 and 127 DAB. Bars indicate standard error of three biological replicates per sample.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3025947&req=5

Figure 5: Accumulation kinetics of the proanthocyanidins catechin, epicatechin, and epigallocatechin during V. vinifera 'Cabernet Sauvignon' (blue dashed line) and V. aestivalis 'Norton' (red solid line) berry skin development. Cabernet Sauvignon berry skin were collected at 49, 59 (véraison, blue arrow), 71, 90 and 112 days after bloom (DAB), and Norton berry skin at 66, 71 (véraison, red arrow), 85, 99 and 127 DAB. Bars indicate standard error of three biological replicates per sample.
Mentions: To match gene expression patterns with flavonoid profiles, we analyzed the accumulation of the flavan-3-ols catechin, epicatechin, epigallocatechin (EGC), and epicatechin gallate (ECG) in berry skin across seven developmental stages (Figure 5). Norton and Cabernet Sauvignon have comparative levels of catechin at 17 DAB. In Cabernet Sauvignon, catechin levels remained high until just after véraison, whereas in Norton, catechin dropped to the lowest levels at 71 DAB (véraison) and then rose until 127 DAB. Epicatechin was not detected in either variety until véraison, but was detectable in Norton at 85 and 99 DAB as well as in Cabernet Sauvignon post-véraison. EGC levels remained steady in Cabernet Sauvignon throughout berry development, but increased steadily in Norton until 127 DAB. ECG was detected only in Cabernet Sauvignon (data not shown).

Bottom Line: The data showed that there were higher transcript levels of the genes encoding flavonoid-3'-O-hydroxylase (F3'H), flavonoid-3',5'-hydroxylase (F3'5'H), leucoanthocyanidin dioxygenase (LDOX), UDP-glucose:flavonoid 3'-O-glucosyltransferase (UFGT), anthocyanidin reductase (ANR), leucoanthocyanidin reductase (LAR) 1 and LAR2 in berry skin of Norton than in those of Cabernet Sauvignon.It was also found that the total amount of anthocyanins was markedly higher in Norton than in Cabernet Sauvignon berry skin at harvest, and five anthocyanin derivatives and three PA compounds exhibited distinctive accumulation patterns in Norton berry skin.These results reveal a unique pattern of the regulation of transcription and biosynthesis pathways underlying the viticultural and enological characteristics of Norton grape, and yield new insights into the understanding of the flavonoid pathway in non-vinifera grape varieties.

View Article: PubMed Central - HTML - PubMed

Affiliation: Center for Grapevine Biotechnology, William H. Darr School of Agriculture, Missouri State University, Mountain Grove, MO 65711, USA.

ABSTRACT

Background: The complex and dynamic changes during grape berry development have been studied in Vitis vinifera, but little is known about these processes in other Vitis species. The grape variety 'Norton', with a major portion of its genome derived from Vitis aestivalis, maintains high levels of malic acid and phenolic acids in the ripening berries in comparison with V. vinifera varieties such as Cabernet Sauvignon. Furthermore, Norton berries develop a remarkably high level of resistance to most fungal pathogens while Cabernet Sauvignon berries remain susceptible to those pathogens. The distinct characteristics of Norton and Cabernet Sauvignon merit a comprehensive analysis of transcriptional regulation and metabolite pathways.

Results: A microarray study was conducted on transcriptome changes of Norton berry skin during the period of 37 to 127 days after bloom, which represents berry developmental phases from herbaceous growth to full ripeness. Samples of six berry developmental stages were collected. Analysis of the microarray data revealed that a total of 3,352 probe sets exhibited significant differences at transcript levels, with two-fold changes between at least two developmental stages. Expression profiles of defense-related genes showed a dynamic modulation of nucleotide-binding site-leucine-rich repeat (NBS-LRR) resistance genes and pathogenesis-related (PR) genes during berry development. Transcript levels of PR-1 in Norton berry skin clearly increased during the ripening phase. As in other grapevines, genes of the phenylpropanoid pathway were up-regulated in Norton as the berry developed. The most noticeable was the steady increase of transcript levels of stilbene synthase genes. Transcriptional patterns of six MYB transcription factors and eleven structural genes of the flavonoid pathway and profiles of anthocyanins and proanthocyanidins (PAs) during berry skin development were analyzed comparatively in Norton and Cabernet Sauvignon. Transcriptional patterns of MYB5A and MYB5B were similar during berry development between the two varieties, but those of MYBPA1 and MYBPA2 were strikingly different, demonstrating that the general flavonoid pathways are regulated under different MYB factors. The data showed that there were higher transcript levels of the genes encoding flavonoid-3'-O-hydroxylase (F3'H), flavonoid-3',5'-hydroxylase (F3'5'H), leucoanthocyanidin dioxygenase (LDOX), UDP-glucose:flavonoid 3'-O-glucosyltransferase (UFGT), anthocyanidin reductase (ANR), leucoanthocyanidin reductase (LAR) 1 and LAR2 in berry skin of Norton than in those of Cabernet Sauvignon. It was also found that the total amount of anthocyanins was markedly higher in Norton than in Cabernet Sauvignon berry skin at harvest, and five anthocyanin derivatives and three PA compounds exhibited distinctive accumulation patterns in Norton berry skin.

Conclusions: This study provides an overview of the transcriptome changes and the flavonoid profiles in the berry skin of Norton, an important North American wine grape, during berry development. The steady increase of transcripts of PR-1 and stilbene synthase genes likely contributes to the developmentally regulated resistance during ripening of Norton berries. More studies are required to address the precise role of each stilbene synthase gene in berry development and disease resistance. Transcriptional regulation of MYBA1, MYBA2, MYB5A and MYBPA1 as well as expression levels of their putative targets F3'H, F3'5'H, LDOX, UFGT, ANR, LAR1, and LAR2 are highly correlated with the characteristic anthocyanin and PA profiles in Norton berry skin. These results reveal a unique pattern of the regulation of transcription and biosynthesis pathways underlying the viticultural and enological characteristics of Norton grape, and yield new insights into the understanding of the flavonoid pathway in non-vinifera grape varieties.

Show MeSH