Limits...
An oral vaccine based on U-Omp19 induces protection against B. abortus mucosal challenge by inducing an adaptive IL-17 immune response in mice.

Pasquevich KA, Ibañez AE, Coria LM, García Samartino C, Estein SM, Zwerdling A, Barrionuevo P, Oliveira FS, Seither C, Warzecha H, Oliveira SC, Giambartolomei GH, Cassataro J - PLoS ONE (2011)

Bottom Line: In this study, we determined that if IL-17A was neutralized in vivo during the challenge period, the mucosal U-Omp19 vaccine did not confer mucosal protection.All together, our results indicate that an oral unadjuvanted vaccine based on U-Omp19 induces protection against a mucosal challenge with Brucella abortus by inducing an adaptive IL-17 immune response.They also indicate different and important new aspects i) IL-17 does not contribute to reduce the bacterial burden in non vaccinated mice and ii) IL-17 plays a central role in vaccine mediated anti-Brucella mucosal immunity.

View Article: PubMed Central - PubMed

Affiliation: Laboratorio de Inmunogenética, Hospital de Clínicas José de San Martín, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.

ABSTRACT
As Brucella infections occur mainly through mucosal surfaces, the development of mucosal administered vaccines could be radical for the control of brucellosis. In this work we evaluated the potential of Brucella abortus 19 kDa outer membrane protein (U-Omp19) as an edible subunit vaccine against brucellosis. We investigated the protective immune response elicited against oral B. abortus infection after vaccination of mice with leaves from transgenic plants expressing U-Omp19; or with plant-made or E. coli-made purified U-Omp19. All tested U-Omp19 formulations induced protection against Brucella when orally administered without the need of adjuvants. U-Omp19 also induced protection against a systemic challenge when parenterally administered. This built-in adjuvant ability of U-Omp19 was independent of TLR4 and could be explained at least in part by its capability to activate dendritic cells in vivo. While unadjuvanted U-Omp19 intraperitoneally administered induced a specific Th1 response, following U-Omp19 oral delivery a mixed specific Th1-Th17 response was induced. Depletion of CD4(+) T cells in mice orally vaccinated with U-Omp19 resulted in a loss of the elicited protection, indicating that this cell type mediates immune protection. The role of IL-17 against Brucella infection has never been explored. In this study, we determined that if IL-17A was neutralized in vivo during the challenge period, the mucosal U-Omp19 vaccine did not confer mucosal protection. On the contrary, IL-17A neutralization during the infection did not influence at all the subsistence and growth of this bacterium in PBS-immunized mice. All together, our results indicate that an oral unadjuvanted vaccine based on U-Omp19 induces protection against a mucosal challenge with Brucella abortus by inducing an adaptive IL-17 immune response. They also indicate different and important new aspects i) IL-17 does not contribute to reduce the bacterial burden in non vaccinated mice and ii) IL-17 plays a central role in vaccine mediated anti-Brucella mucosal immunity.

Show MeSH

Related in: MedlinePlus

Omp19 expression in plants.(A) SDS PAGE of different fractions obtained from immobilized metal affinity chromatography. 1, Marker; 2, crude extract; 3, flow through; 4, first wash; 5, second wash; 6, eluate. Marker band sizes are indicated on the left in kDa. (B) Immunoblot of plant extracts. Crude leave extracts were separated in a 12% SDS-PAGE, transferred to a PVDF membrane and probed with Omp19 antisera. 1: WT; 2,3,4: Crude protein extracts of leaf material corresponding to 50 µg, 25 µg, and 12.5 µg of total protein, respectively. 5: 1 µg purified Omp19.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3021544&req=5

pone-0016203-g001: Omp19 expression in plants.(A) SDS PAGE of different fractions obtained from immobilized metal affinity chromatography. 1, Marker; 2, crude extract; 3, flow through; 4, first wash; 5, second wash; 6, eluate. Marker band sizes are indicated on the left in kDa. (B) Immunoblot of plant extracts. Crude leave extracts were separated in a 12% SDS-PAGE, transferred to a PVDF membrane and probed with Omp19 antisera. 1: WT; 2,3,4: Crude protein extracts of leaf material corresponding to 50 µg, 25 µg, and 12.5 µg of total protein, respectively. 5: 1 µg purified Omp19.

Mentions: The production of plant-derived vaccines is, in principle, almost limitless and may require little or no downstream processing [30], [31]. An edible vaccine could be useful, for instance, for administration to cattle. As lipidation is not a common posttranslational modification in plants, we first studied whether a plant-made vaccine based on unlipidated (U)-Omp19 expression would be effective against brucellosis. For this purpose, we decided to use in an initial instance a fast transient expression system to obtain sufficient quantities for initial studies. Therefore, the gene encoding unlipidated U-Omp19 was cloned into the magnifection system [32] and expressed in Nicotiana benthamiana (tobacco) plants (Figure 1).


An oral vaccine based on U-Omp19 induces protection against B. abortus mucosal challenge by inducing an adaptive IL-17 immune response in mice.

Pasquevich KA, Ibañez AE, Coria LM, García Samartino C, Estein SM, Zwerdling A, Barrionuevo P, Oliveira FS, Seither C, Warzecha H, Oliveira SC, Giambartolomei GH, Cassataro J - PLoS ONE (2011)

Omp19 expression in plants.(A) SDS PAGE of different fractions obtained from immobilized metal affinity chromatography. 1, Marker; 2, crude extract; 3, flow through; 4, first wash; 5, second wash; 6, eluate. Marker band sizes are indicated on the left in kDa. (B) Immunoblot of plant extracts. Crude leave extracts were separated in a 12% SDS-PAGE, transferred to a PVDF membrane and probed with Omp19 antisera. 1: WT; 2,3,4: Crude protein extracts of leaf material corresponding to 50 µg, 25 µg, and 12.5 µg of total protein, respectively. 5: 1 µg purified Omp19.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3021544&req=5

pone-0016203-g001: Omp19 expression in plants.(A) SDS PAGE of different fractions obtained from immobilized metal affinity chromatography. 1, Marker; 2, crude extract; 3, flow through; 4, first wash; 5, second wash; 6, eluate. Marker band sizes are indicated on the left in kDa. (B) Immunoblot of plant extracts. Crude leave extracts were separated in a 12% SDS-PAGE, transferred to a PVDF membrane and probed with Omp19 antisera. 1: WT; 2,3,4: Crude protein extracts of leaf material corresponding to 50 µg, 25 µg, and 12.5 µg of total protein, respectively. 5: 1 µg purified Omp19.
Mentions: The production of plant-derived vaccines is, in principle, almost limitless and may require little or no downstream processing [30], [31]. An edible vaccine could be useful, for instance, for administration to cattle. As lipidation is not a common posttranslational modification in plants, we first studied whether a plant-made vaccine based on unlipidated (U)-Omp19 expression would be effective against brucellosis. For this purpose, we decided to use in an initial instance a fast transient expression system to obtain sufficient quantities for initial studies. Therefore, the gene encoding unlipidated U-Omp19 was cloned into the magnifection system [32] and expressed in Nicotiana benthamiana (tobacco) plants (Figure 1).

Bottom Line: In this study, we determined that if IL-17A was neutralized in vivo during the challenge period, the mucosal U-Omp19 vaccine did not confer mucosal protection.All together, our results indicate that an oral unadjuvanted vaccine based on U-Omp19 induces protection against a mucosal challenge with Brucella abortus by inducing an adaptive IL-17 immune response.They also indicate different and important new aspects i) IL-17 does not contribute to reduce the bacterial burden in non vaccinated mice and ii) IL-17 plays a central role in vaccine mediated anti-Brucella mucosal immunity.

View Article: PubMed Central - PubMed

Affiliation: Laboratorio de Inmunogenética, Hospital de Clínicas José de San Martín, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.

ABSTRACT
As Brucella infections occur mainly through mucosal surfaces, the development of mucosal administered vaccines could be radical for the control of brucellosis. In this work we evaluated the potential of Brucella abortus 19 kDa outer membrane protein (U-Omp19) as an edible subunit vaccine against brucellosis. We investigated the protective immune response elicited against oral B. abortus infection after vaccination of mice with leaves from transgenic plants expressing U-Omp19; or with plant-made or E. coli-made purified U-Omp19. All tested U-Omp19 formulations induced protection against Brucella when orally administered without the need of adjuvants. U-Omp19 also induced protection against a systemic challenge when parenterally administered. This built-in adjuvant ability of U-Omp19 was independent of TLR4 and could be explained at least in part by its capability to activate dendritic cells in vivo. While unadjuvanted U-Omp19 intraperitoneally administered induced a specific Th1 response, following U-Omp19 oral delivery a mixed specific Th1-Th17 response was induced. Depletion of CD4(+) T cells in mice orally vaccinated with U-Omp19 resulted in a loss of the elicited protection, indicating that this cell type mediates immune protection. The role of IL-17 against Brucella infection has never been explored. In this study, we determined that if IL-17A was neutralized in vivo during the challenge period, the mucosal U-Omp19 vaccine did not confer mucosal protection. On the contrary, IL-17A neutralization during the infection did not influence at all the subsistence and growth of this bacterium in PBS-immunized mice. All together, our results indicate that an oral unadjuvanted vaccine based on U-Omp19 induces protection against a mucosal challenge with Brucella abortus by inducing an adaptive IL-17 immune response. They also indicate different and important new aspects i) IL-17 does not contribute to reduce the bacterial burden in non vaccinated mice and ii) IL-17 plays a central role in vaccine mediated anti-Brucella mucosal immunity.

Show MeSH
Related in: MedlinePlus