Limits...
Altered effective connectivity network of the amygdala in social anxiety disorder: a resting-state FMRI study.

Liao W, Qiu C, Gentili C, Walter M, Pan Z, Ding J, Zhang W, Gong Q, Chen H - PLoS ONE (2010)

Bottom Line: Decreased influence from inferior temporal gyrus (ITG) to amygdala was found in SAD, while bidirectional influences between amygdala and visual cortices were increased compared to HCs.Our study is the first to reveal a network of abnormal effective connectivity of core structures in SAD.The model which is proposed based on our results lends neurobiological support towards cognitive models considering disinhibition and an attentional bias towards negative stimuli as a core feature of the disorder.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.

ABSTRACT
The amygdala is often found to be abnormally recruited in social anxiety disorder (SAD) patients. The question whether amygdala activation is primarily abnormal and affects other brain systems or whether it responds "normally" to an abnormal pattern of information conveyed by other brain structures remained unanswered. To address this question, we investigated a network of effective connectivity associated with the amygdala using Granger causality analysis on resting-state functional MRI data of 22 SAD patients and 21 healthy controls (HC). Implications of abnormal effective connectivity and clinical severity were investigated using the Liebowitz Social Anxiety Scale (LSAS). Decreased influence from inferior temporal gyrus (ITG) to amygdala was found in SAD, while bidirectional influences between amygdala and visual cortices were increased compared to HCs. Clinical relevance of decreased effective connectivity from ITG to amygdala was suggested by a negative correlation of LSAS avoidance scores and the value of Granger causality. Our study is the first to reveal a network of abnormal effective connectivity of core structures in SAD. This is in support of a disregulation in predescribed modules involved in affect control. The amygdala is placed in a central position of dysfunction characterized both by decreased regulatory influence of orbitofrontal cortex and increased crosstalk with visual cortex. The model which is proposed based on our results lends neurobiological support towards cognitive models considering disinhibition and an attentional bias towards negative stimuli as a core feature of the disorder.

Show MeSH

Related in: MedlinePlus

Regions showing decreased effective connectivity.Decreased directions are marked with blue arrows in SAD compared to HC. Scatter plots showed correlations between effective connectivity in group level regions (see Figures 1 and 2) and avoidance factor in LSAS in SAD patients (red line and red open circles), and in HCs (blue line and blue solid circles), separately (). (AMG: amygdala, ITG: inferier temporal gyrus).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3008679&req=5

pone-0015238-g004: Regions showing decreased effective connectivity.Decreased directions are marked with blue arrows in SAD compared to HC. Scatter plots showed correlations between effective connectivity in group level regions (see Figures 1 and 2) and avoidance factor in LSAS in SAD patients (red line and red open circles), and in HCs (blue line and blue solid circles), separately (). (AMG: amygdala, ITG: inferier temporal gyrus).

Mentions: The mutual increased influences between the right amygdala the left mOFG were positively correlated with the avoidance factor of LSAS in SAD group, and were absent in the HC group (Fig. 3). Moreover, decreased influences from the left and right ITG to the bilateral amygdalae were negatively correlated with the avoidance factor of LSAS in SAD group, respectively (Fig. 4). As a matter of fact those influences just trended to positive correlation in HC group (for details see Table 2) (Fig. 4). The other brain regions with aberrant effective connectivity showed no significant correlation with LSAS.


Altered effective connectivity network of the amygdala in social anxiety disorder: a resting-state FMRI study.

Liao W, Qiu C, Gentili C, Walter M, Pan Z, Ding J, Zhang W, Gong Q, Chen H - PLoS ONE (2010)

Regions showing decreased effective connectivity.Decreased directions are marked with blue arrows in SAD compared to HC. Scatter plots showed correlations between effective connectivity in group level regions (see Figures 1 and 2) and avoidance factor in LSAS in SAD patients (red line and red open circles), and in HCs (blue line and blue solid circles), separately (). (AMG: amygdala, ITG: inferier temporal gyrus).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3008679&req=5

pone-0015238-g004: Regions showing decreased effective connectivity.Decreased directions are marked with blue arrows in SAD compared to HC. Scatter plots showed correlations between effective connectivity in group level regions (see Figures 1 and 2) and avoidance factor in LSAS in SAD patients (red line and red open circles), and in HCs (blue line and blue solid circles), separately (). (AMG: amygdala, ITG: inferier temporal gyrus).
Mentions: The mutual increased influences between the right amygdala the left mOFG were positively correlated with the avoidance factor of LSAS in SAD group, and were absent in the HC group (Fig. 3). Moreover, decreased influences from the left and right ITG to the bilateral amygdalae were negatively correlated with the avoidance factor of LSAS in SAD group, respectively (Fig. 4). As a matter of fact those influences just trended to positive correlation in HC group (for details see Table 2) (Fig. 4). The other brain regions with aberrant effective connectivity showed no significant correlation with LSAS.

Bottom Line: Decreased influence from inferior temporal gyrus (ITG) to amygdala was found in SAD, while bidirectional influences between amygdala and visual cortices were increased compared to HCs.Our study is the first to reveal a network of abnormal effective connectivity of core structures in SAD.The model which is proposed based on our results lends neurobiological support towards cognitive models considering disinhibition and an attentional bias towards negative stimuli as a core feature of the disorder.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.

ABSTRACT
The amygdala is often found to be abnormally recruited in social anxiety disorder (SAD) patients. The question whether amygdala activation is primarily abnormal and affects other brain systems or whether it responds "normally" to an abnormal pattern of information conveyed by other brain structures remained unanswered. To address this question, we investigated a network of effective connectivity associated with the amygdala using Granger causality analysis on resting-state functional MRI data of 22 SAD patients and 21 healthy controls (HC). Implications of abnormal effective connectivity and clinical severity were investigated using the Liebowitz Social Anxiety Scale (LSAS). Decreased influence from inferior temporal gyrus (ITG) to amygdala was found in SAD, while bidirectional influences between amygdala and visual cortices were increased compared to HCs. Clinical relevance of decreased effective connectivity from ITG to amygdala was suggested by a negative correlation of LSAS avoidance scores and the value of Granger causality. Our study is the first to reveal a network of abnormal effective connectivity of core structures in SAD. This is in support of a disregulation in predescribed modules involved in affect control. The amygdala is placed in a central position of dysfunction characterized both by decreased regulatory influence of orbitofrontal cortex and increased crosstalk with visual cortex. The model which is proposed based on our results lends neurobiological support towards cognitive models considering disinhibition and an attentional bias towards negative stimuli as a core feature of the disorder.

Show MeSH
Related in: MedlinePlus