Limits...
Toxic effects of domoic acid in the seabream Sparus aurata.

Nogueira I, Lobo-da-Cunha A, Afonso A, Rivera S, Azevedo J, Monteiro R, Cervantes R, Gago-Martinez A, Vasconcelos V - Mar Drugs (2010)

Bottom Line: Mortality (66.67 ± 16.67%) was only observed in dose of 9.0 mg kg(-1) bw.Furthermore, the mean concentrations (±SD) of DA detected by HPLC-UV in extracts of brain after exposure to 9.0 mg DA kg(-1) bw were 0.61 ± 0.01, 0.96 ± 0.00, and 0.36 ± 0.01 mg DA kg(-1) tissue at 1, 2, and 4 hours.The lack of major permanent brain damage in S. aurata, and reversibility of neurotoxic signs, suggest that lower susceptibility to DA or neuronal recovery occurs in affected individuals.

View Article: PubMed Central - PubMed

Affiliation: CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Rua dos Bragas 177-289, 4150-123 Porto, Portugal. isabelcaldevilla@gmail.com

ABSTRACT
Neurotoxicity induced in fish by domoic acid (DA) was assessed with respect to occurrence of neurotoxic signs, lethality, and histopathology by light microscopy. Sparus aurata were exposed to a single dose of DA by intraperitoneal (i.p.) injection of 0, 0.45, 0.9, and 9.0 mg DA kg(-1) bw. Mortality (66.67 ± 16.67%) was only observed in dose of 9.0 mg kg(-1) bw. Signs of neurological toxicity were detected for the doses of 0.9 and 9.0 mg DA kg(-1) bw. Furthermore, the mean concentrations (±SD) of DA detected by HPLC-UV in extracts of brain after exposure to 9.0 mg DA kg(-1) bw were 0.61 ± 0.01, 0.96 ± 0.00, and 0.36 ± 0.01 mg DA kg(-1) tissue at 1, 2, and 4 hours. The lack of major permanent brain damage in S. aurata, and reversibility of neurotoxic signs, suggest that lower susceptibility to DA or neuronal recovery occurs in affected individuals.

Show MeSH

Related in: MedlinePlus

Brain sections of S. aurata showing positive immunoreactivity to the monoclonal antibody MAB379, which recognizes KA-type glutamate receptors (GluR5, 6, and 7): (1) Cerebellar cortex comprising the granular layer (g), Purkinje cell layer (P) and molecular layer (m). The cerebellar glomeruli (arrowheads) and Purkinje cell bodies (arrows) showed strong immunoreactivity; (2) Diencephalon comprising neuropil (n) and immunoreactive neuron cell bodies (arrowheads); (3) Myelencephalon comprising neuropil (n), glial cells (arrows), and neurons with peripherial Nissl bodies showing strong immunoreactivity (arrowheads); (4) Mesencephalon showing a layer with small immunoreactive neurons (arrows) in the stratum periventricularis (sp).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC2993002&req=5

f1-marinedrugs-08-02721: Brain sections of S. aurata showing positive immunoreactivity to the monoclonal antibody MAB379, which recognizes KA-type glutamate receptors (GluR5, 6, and 7): (1) Cerebellar cortex comprising the granular layer (g), Purkinje cell layer (P) and molecular layer (m). The cerebellar glomeruli (arrowheads) and Purkinje cell bodies (arrows) showed strong immunoreactivity; (2) Diencephalon comprising neuropil (n) and immunoreactive neuron cell bodies (arrowheads); (3) Myelencephalon comprising neuropil (n), glial cells (arrows), and neurons with peripherial Nissl bodies showing strong immunoreactivity (arrowheads); (4) Mesencephalon showing a layer with small immunoreactive neurons (arrows) in the stratum periventricularis (sp).

Mentions: The monoclonal antibody MAB379, was used for immunohistochemistry of brain sections obtained from fish injected with PBS alone. Immunopositivity for MAB379 was observed with different intensities (Figure 1). The negative controls showed no immunostaining. The Purkinje cell bodies, which are present in the cerebellar cortex, showed strong immunoreactivity, whereas the cerebellar glomeruli, which are located in the granular layer, showed moderate immunoreactivity (Figure 1-1). Several immunoreactive neuron cell bodies were identified in the diencephalon (Figure 1-2). The neuropil, which is a dense intricate felt work of interwoven fine glial processes, fibrils, synaptic terminals, axons, and dendrites that is interspersed among the bodies of the nerve cells and of the glial cells, was found to be immunonegative. Moreover, in the myelencephalon (Figure 1-3), strong immunoreactivity was observed in neurons that contained peripheral Nissl bodies, which are known to correspond to ribosomes in large aggregates and rough endoplasmic reticulum. Furthermore, in mesencephalon, a layer in the stratum periventricularis that corresponded to small neurons was found to show a moderate positive staining (Figure 1-4).


Toxic effects of domoic acid in the seabream Sparus aurata.

Nogueira I, Lobo-da-Cunha A, Afonso A, Rivera S, Azevedo J, Monteiro R, Cervantes R, Gago-Martinez A, Vasconcelos V - Mar Drugs (2010)

Brain sections of S. aurata showing positive immunoreactivity to the monoclonal antibody MAB379, which recognizes KA-type glutamate receptors (GluR5, 6, and 7): (1) Cerebellar cortex comprising the granular layer (g), Purkinje cell layer (P) and molecular layer (m). The cerebellar glomeruli (arrowheads) and Purkinje cell bodies (arrows) showed strong immunoreactivity; (2) Diencephalon comprising neuropil (n) and immunoreactive neuron cell bodies (arrowheads); (3) Myelencephalon comprising neuropil (n), glial cells (arrows), and neurons with peripherial Nissl bodies showing strong immunoreactivity (arrowheads); (4) Mesencephalon showing a layer with small immunoreactive neurons (arrows) in the stratum periventricularis (sp).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC2993002&req=5

f1-marinedrugs-08-02721: Brain sections of S. aurata showing positive immunoreactivity to the monoclonal antibody MAB379, which recognizes KA-type glutamate receptors (GluR5, 6, and 7): (1) Cerebellar cortex comprising the granular layer (g), Purkinje cell layer (P) and molecular layer (m). The cerebellar glomeruli (arrowheads) and Purkinje cell bodies (arrows) showed strong immunoreactivity; (2) Diencephalon comprising neuropil (n) and immunoreactive neuron cell bodies (arrowheads); (3) Myelencephalon comprising neuropil (n), glial cells (arrows), and neurons with peripherial Nissl bodies showing strong immunoreactivity (arrowheads); (4) Mesencephalon showing a layer with small immunoreactive neurons (arrows) in the stratum periventricularis (sp).
Mentions: The monoclonal antibody MAB379, was used for immunohistochemistry of brain sections obtained from fish injected with PBS alone. Immunopositivity for MAB379 was observed with different intensities (Figure 1). The negative controls showed no immunostaining. The Purkinje cell bodies, which are present in the cerebellar cortex, showed strong immunoreactivity, whereas the cerebellar glomeruli, which are located in the granular layer, showed moderate immunoreactivity (Figure 1-1). Several immunoreactive neuron cell bodies were identified in the diencephalon (Figure 1-2). The neuropil, which is a dense intricate felt work of interwoven fine glial processes, fibrils, synaptic terminals, axons, and dendrites that is interspersed among the bodies of the nerve cells and of the glial cells, was found to be immunonegative. Moreover, in the myelencephalon (Figure 1-3), strong immunoreactivity was observed in neurons that contained peripheral Nissl bodies, which are known to correspond to ribosomes in large aggregates and rough endoplasmic reticulum. Furthermore, in mesencephalon, a layer in the stratum periventricularis that corresponded to small neurons was found to show a moderate positive staining (Figure 1-4).

Bottom Line: Mortality (66.67 ± 16.67%) was only observed in dose of 9.0 mg kg(-1) bw.Furthermore, the mean concentrations (±SD) of DA detected by HPLC-UV in extracts of brain after exposure to 9.0 mg DA kg(-1) bw were 0.61 ± 0.01, 0.96 ± 0.00, and 0.36 ± 0.01 mg DA kg(-1) tissue at 1, 2, and 4 hours.The lack of major permanent brain damage in S. aurata, and reversibility of neurotoxic signs, suggest that lower susceptibility to DA or neuronal recovery occurs in affected individuals.

View Article: PubMed Central - PubMed

Affiliation: CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Rua dos Bragas 177-289, 4150-123 Porto, Portugal. isabelcaldevilla@gmail.com

ABSTRACT
Neurotoxicity induced in fish by domoic acid (DA) was assessed with respect to occurrence of neurotoxic signs, lethality, and histopathology by light microscopy. Sparus aurata were exposed to a single dose of DA by intraperitoneal (i.p.) injection of 0, 0.45, 0.9, and 9.0 mg DA kg(-1) bw. Mortality (66.67 ± 16.67%) was only observed in dose of 9.0 mg kg(-1) bw. Signs of neurological toxicity were detected for the doses of 0.9 and 9.0 mg DA kg(-1) bw. Furthermore, the mean concentrations (±SD) of DA detected by HPLC-UV in extracts of brain after exposure to 9.0 mg DA kg(-1) bw were 0.61 ± 0.01, 0.96 ± 0.00, and 0.36 ± 0.01 mg DA kg(-1) tissue at 1, 2, and 4 hours. The lack of major permanent brain damage in S. aurata, and reversibility of neurotoxic signs, suggest that lower susceptibility to DA or neuronal recovery occurs in affected individuals.

Show MeSH
Related in: MedlinePlus