Limits...
Antiviral lead compounds from marine sponges.

Sagar S, Kaur M, Minneman KP - Mar Drugs (2010)

Bottom Line: Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment.They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms.Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents.

View Article: PubMed Central - PubMed

Affiliation: Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Jeddah, Saudi Arabia. sunil.sagar@kaust.edu.sa

ABSTRACT
Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hoped to be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed.

Show MeSH

Related in: MedlinePlus

Structure of 4-methylaaptamine.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC2992996&req=5

f6-marinedrugs-08-02619: Structure of 4-methylaaptamine.

Mentions: Isolation of the alkaloid 4-methylaaptamine (Figure 6) from the marine sponge Aaptos sp. (collected in Abrolhos, Bahia, Brazil) and the preliminary activity of its crude extract to inhibit 76% of HSV-1 replication in Vero cells at a concentration of 2.4 μg/mL was first reported by Coutinho et al. [62]. Another study confirmed the anti-HSV-1 activity of 4-methylaaptamine with an EC50 of 2.4 μM [63], which is even more potent than acyclovir, which has an EC50 of 8.6 μM [62]. 4-Methylaaptamine was found to inhibit HSV-1-infection in Vero cells even 4 h after infection, suggesting the inhibition of initial events during HSV-1 replication. Apparently the compound could inhibit expression of an HSV-1 immediate-early protein, ICP27, which regulates splicing, termination, and nuclear export of viral transcripts thus preventing viral replication [63].


Antiviral lead compounds from marine sponges.

Sagar S, Kaur M, Minneman KP - Mar Drugs (2010)

Structure of 4-methylaaptamine.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC2992996&req=5

f6-marinedrugs-08-02619: Structure of 4-methylaaptamine.
Mentions: Isolation of the alkaloid 4-methylaaptamine (Figure 6) from the marine sponge Aaptos sp. (collected in Abrolhos, Bahia, Brazil) and the preliminary activity of its crude extract to inhibit 76% of HSV-1 replication in Vero cells at a concentration of 2.4 μg/mL was first reported by Coutinho et al. [62]. Another study confirmed the anti-HSV-1 activity of 4-methylaaptamine with an EC50 of 2.4 μM [63], which is even more potent than acyclovir, which has an EC50 of 8.6 μM [62]. 4-Methylaaptamine was found to inhibit HSV-1-infection in Vero cells even 4 h after infection, suggesting the inhibition of initial events during HSV-1 replication. Apparently the compound could inhibit expression of an HSV-1 immediate-early protein, ICP27, which regulates splicing, termination, and nuclear export of viral transcripts thus preventing viral replication [63].

Bottom Line: Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment.They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms.Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents.

View Article: PubMed Central - PubMed

Affiliation: Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Jeddah, Saudi Arabia. sunil.sagar@kaust.edu.sa

ABSTRACT
Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hoped to be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed.

Show MeSH
Related in: MedlinePlus