Limits...
Determination of the antibiofilm, antiadhesive, and anti-MRSA activities of seven Salvia species.

Al-Bakri AG, Othman G, Afifi FU - Pharmacogn Mag (2010)

Bottom Line: The objective of the study was to establish the antimicrobial activities, including the antiadhesive and antibiofilm effects of seven different Salvia species.An antimicrobial activity toward planktonic cultures demonstrated a significant bacteriocidal activity (≥4 log cycle reduction) for the S. triloba extract against S. aureus including MRSA.This might suggest their use as an antiseptic in the prophylaxis and treatment of S. aureus-associated skin infections.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Pharmacy, University of Jordan, Queen Rania Al-Abdallah Street, Amman, Jordan.

ABSTRACT

Background: Several Salvia species are indigenous to Jordan and are widely used as beverages and spices and for their medicinal properties. The objective of the study was to establish the antimicrobial activities, including the antiadhesive and antibiofilm effects of seven different Salvia species.

Materials and methods: Methods used for planktonic culture included agar diffusion, broth microdilution, and minimal biocidal concentration determination while viable count was used for the determination of the antibiofilm and antiadhesion activities. Overnight cultures of reference strains of Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and clinical strains of methicillin-resistant S. aureus (MRSA) were used as test microorganisms.

Results: An antimicrobial activity toward planktonic cultures demonstrated a significant bacteriocidal activity (≥4 log cycle reduction) for the S. triloba extract against S. aureus including MRSA. Its volatile oil exhibited an antimicrobial activity covering all tested microorganisms with the exception of P. aeruginosa. S. triloba extract and volatile oil were successful in preventing and controlling the biofilm, demonstrating antiadhesion and antibiofilm activities, respectively.

Conclusion: These reported activities for S. triloba extract and volatile oil allows their listing as potential antibiofilm and anti-MRSA natural agents. This might suggest their use as an antiseptic in the prophylaxis and treatment of S. aureus-associated skin infections. The antimicrobial activity of the other tested Salvia species was negligible.

No MeSH data available.


Related in: MedlinePlus

The antibiofilm effect of the volatile oil at different concentrations (v/v %) presented as CFU/well (solid bars) and percentage reduction (%, ▲) against S. aureus. The results are the mean (n = 3) ± SD
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2992137&req=5

Figure 0002: The antibiofilm effect of the volatile oil at different concentrations (v/v %) presented as CFU/well (solid bars) and percentage reduction (%, ▲) against S. aureus. The results are the mean (n = 3) ± SD

Mentions: The S. triloba ethanol extract resulted in about 1.5 log cycle reduction in S. aureus [Figure 1], while its volatile oil exhibited a reduction as high as 4 log cycles against E. coli and C. albicans, and 2 log cycle reduction against S. aureus [Figures 2–4]. Both, plant extract and volatile oil, demonstrated an antibiofilm activity against MRSA clinical strains. The activity of the plant extract against MRSA was lower than that against S. aureus whereas S. triloba extract, at the same tested concentration (0.78 mg/ml), exhibited an 86.2% and 83.4% reduction against MRSA strains and a 98.3% reduction against S. aureus. On the other hand, the antibiofilm activities of the S. triloba volatile oil at a concentration of 12.5% obtained against MRSA strains (99.8% and 94.3%) was comparable to that of S. aureus (98.7%).


Determination of the antibiofilm, antiadhesive, and anti-MRSA activities of seven Salvia species.

Al-Bakri AG, Othman G, Afifi FU - Pharmacogn Mag (2010)

The antibiofilm effect of the volatile oil at different concentrations (v/v %) presented as CFU/well (solid bars) and percentage reduction (%, ▲) against S. aureus. The results are the mean (n = 3) ± SD
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2992137&req=5

Figure 0002: The antibiofilm effect of the volatile oil at different concentrations (v/v %) presented as CFU/well (solid bars) and percentage reduction (%, ▲) against S. aureus. The results are the mean (n = 3) ± SD
Mentions: The S. triloba ethanol extract resulted in about 1.5 log cycle reduction in S. aureus [Figure 1], while its volatile oil exhibited a reduction as high as 4 log cycles against E. coli and C. albicans, and 2 log cycle reduction against S. aureus [Figures 2–4]. Both, plant extract and volatile oil, demonstrated an antibiofilm activity against MRSA clinical strains. The activity of the plant extract against MRSA was lower than that against S. aureus whereas S. triloba extract, at the same tested concentration (0.78 mg/ml), exhibited an 86.2% and 83.4% reduction against MRSA strains and a 98.3% reduction against S. aureus. On the other hand, the antibiofilm activities of the S. triloba volatile oil at a concentration of 12.5% obtained against MRSA strains (99.8% and 94.3%) was comparable to that of S. aureus (98.7%).

Bottom Line: The objective of the study was to establish the antimicrobial activities, including the antiadhesive and antibiofilm effects of seven different Salvia species.An antimicrobial activity toward planktonic cultures demonstrated a significant bacteriocidal activity (≥4 log cycle reduction) for the S. triloba extract against S. aureus including MRSA.This might suggest their use as an antiseptic in the prophylaxis and treatment of S. aureus-associated skin infections.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Pharmacy, University of Jordan, Queen Rania Al-Abdallah Street, Amman, Jordan.

ABSTRACT

Background: Several Salvia species are indigenous to Jordan and are widely used as beverages and spices and for their medicinal properties. The objective of the study was to establish the antimicrobial activities, including the antiadhesive and antibiofilm effects of seven different Salvia species.

Materials and methods: Methods used for planktonic culture included agar diffusion, broth microdilution, and minimal biocidal concentration determination while viable count was used for the determination of the antibiofilm and antiadhesion activities. Overnight cultures of reference strains of Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and clinical strains of methicillin-resistant S. aureus (MRSA) were used as test microorganisms.

Results: An antimicrobial activity toward planktonic cultures demonstrated a significant bacteriocidal activity (≥4 log cycle reduction) for the S. triloba extract against S. aureus including MRSA. Its volatile oil exhibited an antimicrobial activity covering all tested microorganisms with the exception of P. aeruginosa. S. triloba extract and volatile oil were successful in preventing and controlling the biofilm, demonstrating antiadhesion and antibiofilm activities, respectively.

Conclusion: These reported activities for S. triloba extract and volatile oil allows their listing as potential antibiofilm and anti-MRSA natural agents. This might suggest their use as an antiseptic in the prophylaxis and treatment of S. aureus-associated skin infections. The antimicrobial activity of the other tested Salvia species was negligible.

No MeSH data available.


Related in: MedlinePlus