Limits...
Attachment site selection of ticks on roe deer, Capreolus capreolus.

Kiffner C, Lödige C, Alings M, Vor T, Rühe F - Exp. Appl. Acarol. (2010)

Bottom Line: Larvae were mostly found on the head and on the front legs of roe deer, nymphs reached highest densities on the head and highest adult densities were found on the neck of roe deer.The tick stages feeding (larvae, nymphs, females) on roe deer showed high degrees of intrastadial spatial aggregation, whereas males did not.Since different tick development stages occur spatially and temporally clustered on roe deer, transmission experiments of tick-borne pathogens are urgently needed.

View Article: PubMed Central - PubMed

Affiliation: Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077, Göttingen, Germany. ckiffne@gwdg.de

ABSTRACT
The spatio-temporal attachment site patterns of ticks feeding on their hosts can be of significance if co-feeding transmission (i.e. from tick to tick without a systemic infection of the host) of pathogens affects the persistence of a given disease. Using tick infestation data on roe deer, we analysed preferred attachment sites and niche width of Ixodes ticks (larvae, nymphs, males, females) and investigated the degree of inter- and intrastadial aggregation. The different development stages showed rather consistent attachment site patterns and relative narrow feeding site niches. Larvae were mostly found on the head and on the front legs of roe deer, nymphs reached highest densities on the head and highest adult densities were found on the neck of roe deer. The tick stages feeding (larvae, nymphs, females) on roe deer showed high degrees of intrastadial spatial aggregation, whereas males did not. Male ticks showed large feeding site overlap with female ticks. Feeding site overlap between larval-female and larval-nymphal ticks did occur especially during the months May-August on the head and front legs of roe deer and might allow pathogen transmission via co-feeding. Tick density, niche width and niche overlap on roe deer are mainly affected by seasonality, reflecting seasonal activity and abundance patterns of ticks. Since different tick development stages occur spatially and temporally clustered on roe deer, transmission experiments of tick-borne pathogens are urgently needed.

Show MeSH

Related in: MedlinePlus

Sketch outline of the tick collection sites on a roe deer (Capreolus capreolus) buck. Drawing: W. Tambour, J. Seelig
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2992130&req=5

Fig1: Sketch outline of the tick collection sites on a roe deer (Capreolus capreolus) buck. Drawing: W. Tambour, J. Seelig

Mentions: We opportunistically sampled 80 hunter-killed roe deer from forests around the city of Göttingen (centred at, 51°32′2″N, 9°56′8″, radius of ca. 20 km) in central Germany during regular hunting activities. The study area is dominated by mixed deciduous forests comprising mainly of European beech (Fagus sylvatica), Norway maple (Acer pseudoplatanus), European ash (Fraxinus excelsior) and sessile oak (Quercus petraea). The geology of the region is characterized by shallow limestone plateaus with rendzina soils and haplic luvisols, whereas some forest stands grow on sandstone with sandy and loamy cambisols. The altitude above sea level ranges from 151 to 400 m, the mean annual rainfall is 780 mm, and the average annual temperature is 7.8°C (Petritian et al. 2007). Data collection was stratified into 6 distinct sampling seasons: November–December 2007, n = 20; May–June 2008, n = 18; July–August 2008, n = 12; November–December 2008, n = 14, May–June 2009, n = 10 and July–August 2009, n = 6. Roe deer carcasses were disembowelled by the hunters and stored in cooling chambers at 2–8°C until examination. Within 16 h on average (SE: ±2.5 h) after roe deer individuals had been shot, each carcass was examined by two observers wearing latex gloves. The carcass was divided into 6 distinct parts (head, neck, sternum & abdomen, rest of the body, front legs and hind legs, Fig. 1). The roe deer skin was systematically inspected and palpated to detect all ticks. Sites heavily infested were consecutively searched and palpated by both persons. All ticks were removed from each body part with forceps. These ticks were immediately counted and recorded according to life stage and sex (larvae, nymphs, males and females). Finally, they were transferred to sampling tubes and stored at −20°C. All removed ticks belong to the Ixodes ricinus complex; for a more detailed description of the study site and the tick collection see Kiffner et al. (in press). In order to relate the number of ticks to the surface area of each body part, we estimated the surface area of body parts of six roe deer individuals (3 individuals <2 year, 3 individuals >2 years) using basic geometric measurements. Since the absolute surface areas varied considerably among individuals, we used proportional data (Table 1) and allocated these relative measurements to each investigated roe deer individual.Fig. 1


Attachment site selection of ticks on roe deer, Capreolus capreolus.

Kiffner C, Lödige C, Alings M, Vor T, Rühe F - Exp. Appl. Acarol. (2010)

Sketch outline of the tick collection sites on a roe deer (Capreolus capreolus) buck. Drawing: W. Tambour, J. Seelig
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2992130&req=5

Fig1: Sketch outline of the tick collection sites on a roe deer (Capreolus capreolus) buck. Drawing: W. Tambour, J. Seelig
Mentions: We opportunistically sampled 80 hunter-killed roe deer from forests around the city of Göttingen (centred at, 51°32′2″N, 9°56′8″, radius of ca. 20 km) in central Germany during regular hunting activities. The study area is dominated by mixed deciduous forests comprising mainly of European beech (Fagus sylvatica), Norway maple (Acer pseudoplatanus), European ash (Fraxinus excelsior) and sessile oak (Quercus petraea). The geology of the region is characterized by shallow limestone plateaus with rendzina soils and haplic luvisols, whereas some forest stands grow on sandstone with sandy and loamy cambisols. The altitude above sea level ranges from 151 to 400 m, the mean annual rainfall is 780 mm, and the average annual temperature is 7.8°C (Petritian et al. 2007). Data collection was stratified into 6 distinct sampling seasons: November–December 2007, n = 20; May–June 2008, n = 18; July–August 2008, n = 12; November–December 2008, n = 14, May–June 2009, n = 10 and July–August 2009, n = 6. Roe deer carcasses were disembowelled by the hunters and stored in cooling chambers at 2–8°C until examination. Within 16 h on average (SE: ±2.5 h) after roe deer individuals had been shot, each carcass was examined by two observers wearing latex gloves. The carcass was divided into 6 distinct parts (head, neck, sternum & abdomen, rest of the body, front legs and hind legs, Fig. 1). The roe deer skin was systematically inspected and palpated to detect all ticks. Sites heavily infested were consecutively searched and palpated by both persons. All ticks were removed from each body part with forceps. These ticks were immediately counted and recorded according to life stage and sex (larvae, nymphs, males and females). Finally, they were transferred to sampling tubes and stored at −20°C. All removed ticks belong to the Ixodes ricinus complex; for a more detailed description of the study site and the tick collection see Kiffner et al. (in press). In order to relate the number of ticks to the surface area of each body part, we estimated the surface area of body parts of six roe deer individuals (3 individuals <2 year, 3 individuals >2 years) using basic geometric measurements. Since the absolute surface areas varied considerably among individuals, we used proportional data (Table 1) and allocated these relative measurements to each investigated roe deer individual.Fig. 1

Bottom Line: Larvae were mostly found on the head and on the front legs of roe deer, nymphs reached highest densities on the head and highest adult densities were found on the neck of roe deer.The tick stages feeding (larvae, nymphs, females) on roe deer showed high degrees of intrastadial spatial aggregation, whereas males did not.Since different tick development stages occur spatially and temporally clustered on roe deer, transmission experiments of tick-borne pathogens are urgently needed.

View Article: PubMed Central - PubMed

Affiliation: Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077, Göttingen, Germany. ckiffne@gwdg.de

ABSTRACT
The spatio-temporal attachment site patterns of ticks feeding on their hosts can be of significance if co-feeding transmission (i.e. from tick to tick without a systemic infection of the host) of pathogens affects the persistence of a given disease. Using tick infestation data on roe deer, we analysed preferred attachment sites and niche width of Ixodes ticks (larvae, nymphs, males, females) and investigated the degree of inter- and intrastadial aggregation. The different development stages showed rather consistent attachment site patterns and relative narrow feeding site niches. Larvae were mostly found on the head and on the front legs of roe deer, nymphs reached highest densities on the head and highest adult densities were found on the neck of roe deer. The tick stages feeding (larvae, nymphs, females) on roe deer showed high degrees of intrastadial spatial aggregation, whereas males did not. Male ticks showed large feeding site overlap with female ticks. Feeding site overlap between larval-female and larval-nymphal ticks did occur especially during the months May-August on the head and front legs of roe deer and might allow pathogen transmission via co-feeding. Tick density, niche width and niche overlap on roe deer are mainly affected by seasonality, reflecting seasonal activity and abundance patterns of ticks. Since different tick development stages occur spatially and temporally clustered on roe deer, transmission experiments of tick-borne pathogens are urgently needed.

Show MeSH
Related in: MedlinePlus